All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

Investigation of Uplift Capacity of Deep Foundation in Various Geometry Conditions

The Open Construction and Building Technology Journal 31 December 2019 RESEARCH ARTICLE DOI: 10.2174/1874836801913010344

Abstract

Background:

Uplift resistance of deep foundations or piles is a critical factor for deep foundation design in several civil engineering applications such as electric transmission towers, communication towers and wind power generators. Therefore, the behavior of the pile under uplift load, together with its influential parameters, should be studied to provide a proper design.

Objective:

The aim of this study was to identify the effects of pile geometry, including diameter and embedment depth on the Maximum Uplift Resistance (MUR) of the small-scale piles.

Methods:

To achieve the aims of this study, a total of nine laboratory experiments having various pile diameters (i.e. 9 mm, 12 mm and 15 mm) and embedment depths (i.e., 10 cm, 15 cm and 20 cm) were planned, designed and conducted.

Results:

Generally, the results indicated that both diameter and embedment depth have a significant effect on the MUR of piles. The values of the MUR of piles were increased by increasing the pile diameters in all conducted tests. Furthermore, a significant increase in the MUR results was observed when the embedment depths are increased from 10 cm to 20 cm. Moreover, in all cases, small-scale piles were failed in embedment depths ranging from 5 mm to 10 mm.

Conclusion:

It was concluded that pile geometry has a deep impact on the MUR of the piles. Future research can be done to investigate the effects of other influential factors on the MUR.

Keywords: Deep foundation, Uplift resistance, Pile diameter, Pile embedment depth, Maximum uplift resistance, Uplift load.
Fulltext HTML PDF ePub
1800
1801
1802
1803
1804