Innovative Structural Solutions for Prefab Reinforced Concrete Hall-Type Buildings

Stefano Sorace1, Gloria Terenzi2, *
1 Polytechnic Department of Engineering and Architecture, University of Udine. Via delle Scienze 206, 33100 Udine, Italy
2 Department of Civil and Environmental Engineering, University of Florence. Via S. Marta 3, 50139 Florence, Italy

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 5424
Abstract HTML Views: 1849
PDF Downloads: 1053
ePub Downloads: 653
Total Views/Downloads: 8979
Unique Statistics:

Full-Text HTML Views: 2236
Abstract HTML Views: 892
PDF Downloads: 689
ePub Downloads: 384
Total Views/Downloads: 4201

Creative Commons License
© 2019 Sorace and Terenzi.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: ( This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Civil and Environmental Engineering, University of Florence. Via S. Marta 3, 50139 Florence, Italy; Tel: +39552758887; E-mail:



The anti-seismic design of prefab reinforced concrete buildings is usually carried out with a conventional ductility-based approach. This implies a remarkable plastic demand on columns, as well as damages to the connections of structural and non-structural members, for seismic events with comparable intensity to the basic design earthquake normative level.


In view of this, a study was developed and aimed at extending to the field of new prefab reinforced concrete structures the application of advanced seismic protection strategies, capable of guaranteeing undamaged response up to the maximum considered earthquake normative level.


A benchmark building was designed as demonstrative case study for this purpose, in the three following hypotheses: (a) according to a traditional ductility-based approach; (b) by incorporating dissipative bracings, equipped with fluid viscous dampers; (c) by placing a seismic isolation system at the base, composed of a set of double curved surface sliders.


The results of the verification analyses show that the targeted performance for the design solutions b) and c) is obtained with sizes of columns and plinths notably smaller than those for the conventional design. This allows compensating the additional cost related to the incorporation of the protective devices, for the dissipative bracing system, and limiting additional costs below 25%, for the base isolation solution. At the same time, a supplemental benefit of the latter is represented by greater protection of contents and plants, as they are fully supported by the seismically isolated ground floor.


The study highlights the advantages offered by the two advanced seismic protection technologies in an unusual field of application, guaranteeing an enhanced performance of structural and non-structural elements, as well as reduced member sizes, as compared to the traditional ductility-based design.

Keywords: Prefab structures, Industrial buildings, Ductility-based design, Dissipative braces, Viscous dampers, Base isolation.