RESEARCH ARTICLE
Evaluation of Characteristics of Concrete Mixed with Bamboo Leaf Ash
Oluwaseye Onikeku1, *, Stanley Muse Shitote2, John Mwero3, Adeola. A. Adedeji4
Article Information
Identifiers and Pagination:
Year: 2019Volume: 13
First Page: 67
Last Page: 80
Publisher ID: TOBCTJ-13-67
DOI: 10.2174/1874836801913010067
Article History:
Received Date: 19/03/2019Revision Received Date: 08/04/2019
Acceptance Date: 11/04/2019
Electronic publication date: 31/05/2019
Collection year: 2019

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Background:
Concrete production around the globe is in billions of tons. Consequently, million metric tons of carbon dioxide are produced annually due to the cement consumption and production which, in turn, cause environmental menace.
Objective:
This research work examines the use of Bamboo Leaf Ash (BLA) as supplementary cementitious materials.
Methods:
The physical, mechanical, and durability properties were studied by partial substitution of cement with BLA at 0, 5, 10, 15, and 20% sequentially. Concrete cubes were cast and cured at 7, 28, 56, and 90 days. Beams were cast and cured at 28 days. A total number of five mixes were investigated, four out of the mix were dedicated to examining the impacts of BLA on the characteristics of concrete.
Results:
Soundness, consistency, initial and final setting time of cement paste values were lower than bamboo blended paste values at 5%, 10%, 15%, and 20% percentage replacement, respectively. The split tensile, compressive, and flexural strength values of conventional concrete were lower than bamboo leaf ash concrete accordingly. Water absorption, permeable voids, sorptivity, and bulk dry density of conventional concrete were higher than bamboo leaf ash concrete at all level of replacements.
Conclusion:
According to the analysis and experimental results obtained, BLA improved split tensile, compressive, and flexural strength benchmark at 10% as the optimum level of replacement. BLA reduced setting time, consistency, compacting factor, slump, water absorption, permeable voids, sorptivity, and density. To this end, BLA can be considered as a good pozzolanic material which can save the cost of construction, and improved concrete properties.