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1. INTRODUCTION

Two  performance  objectives  are  the  basis  of  the  design  of
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steel buildings for earthquake loads. These objectives are the
elastic response during minor to moderate earthquakes and col-
lapse prevention during extreme earthquakes. In order to obtain
these objectives for buildings under minor to moderate earth-
quakes, they are designed with enough lateral stiffness to limit
large displacements. Also, to meet these objectives for build-
ings subjected to extreme earthquakes, they are designed with
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Background:

Different bracing systems of steel Eccentric Braces (EBs) and steel-concrete Buckling-Restrained Braces (BRBs) can be used in steel frames in
order to make the frames stronger in resisting lateral loads. These steel frames with EBs or BRBs are generally called Eccentrically Braced Frames
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Objective:

This study aims to investigate steel frames with bracing systems of steel EBs and steel-concrete BRBs having moment link.

Methods:

The EBFs and BRBFs are nonlinearly analysed employing the finite element software ABAQUS. Experimental tests of the EBF and BRB are
utilised for the validation of their modelling. The modelling is validated by comparing the modelling results with experimental tests results. Then,
an EBF and a BRBF are designed having moment link. The extreme earthquake records of Tabas, Chi-Chi, and Northridge are selected for the
dynamic analyses of the EBF and BRBF. The validated modelling method is applied to analyse the designed EBF and BRBF under the selected
earthquake records.

Results:

The achieved results from the analyses are lateral displacements, base shears, and energy dissipations of the EBF and BRBF and moment link
rotations. These results are compared and discussed.

Conclusion:

It is concluded that the hierarchy of the lateral displacements of the analysed EBF and BRBF, having moment link, is related to the Tabas, Chi-Chi,
and Northridge records because the lateral displacements of the frames are directly proportional to the peak ground accelerations of the records,
and there is the same hierarchy for the records in terms of their peak ground accelerations. Lower lateral displacements are witnessed for the BRBF
than the EBF subjected to the Tabas and Chi-Chi records. However, larger lateral displacement is observed for the BRBF than the EBF under the
Northridge record. The same procedure as the lateral displacements is also revealed for the effectiveness of the BRBF with regard to its link
rotations compared with the EBF. Moreover, the BRBF improves the base shear capacities and energy dissipations of the frame compared with the
EBF. Consequently, the BRBF is generally demonstrated to be superior to the EBF from the structural performance point of view. Thus, the BRBF
can be used more efficiently in structures subjected to large lateral loads compared with the EBF.
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enough ductility to withstand large inelastic displacements and
to prevent collapse. This kind of design of buildings is often
accomplished by applying ductile braced frame systems. These
systems have both great lateral stiffness and ductility.

A  bracing  element  provides  high  lateral  stiffness.  An
inelastic  mechanism  which  is  especially  designed  to  isolate
frame damage during overloading offers ductility. Steel frames
with steel Eccentric Braces (EBs) or steel-concrete Buckling-
Restrained  Braces  (BRBs),  which  are  respectively  called
Eccentrically  Braced  Frames  (EBFs)  or  Buckling-Restrained
Braced Frames (BRBFs), are common types of ductile braced
frame systems.

The  EBFs  dissipate  energy  as  stiffened  beam  segments,
called  links,  which  rotate  inelastically  under  extreme
earthquake loading. The BRBFs consist of a steel core confined
in  a  concrete-filled  steel  tube.  The  lateral  forces  are  axially
resisted by the core, while the buckling of the core is prevented
by the concrete confinement. Thus, the BRBFs dissipate energy
through  the  axial  yielding  of  the  BRB  core.  BRBs  behave
equally  well  in  tension  and  compression.  The  balanced
hysteretic  behaviour  of  the  BRBs  provides  greater  ductility
than  the  traditional  braces  that  are  limited  by  poor  post-
buckling  resistance  to  compressive  loads  [1].

Links in the EBFs and BRBFs are formed by eccentricities
between two braces connections. Very large moment and less
shear are developed by the flexural yielding link, moment link,
with the link length according to equation (1):

(1)

where,  e,  Mp,  and  Vp  are  the  link  length,  plastic  moment
capacity,  and  plastic  shear  capacity  of  the  link  section,
respectively.

This paper deals with the investigation of the steel EBFs
and  steel-concrete  BRBFs  having  moment  link  under  the
extreme earthquake records of Tabas, Chi-Chi, and Northridge.
ABAQUS  is  employed  to  perform  the  nonlinear  dynamic
analyses of the EBFs and BRBFs. The modelling verification
of  this  study is  established by comparison of  its  results  with
those of the experimental tests. The verified modelling is then
utilised  to  analyse  the  designed  EBF  and  BRBF  having
moment  link  under  the  earthquake  records.  The  obtained
results  from  the  nonlinear  analyses  are  compared  and
discussed.

2. MATERIALS AND METHODS

Since  the  accuracy  of  modelling  the  EBF  and  BRBF  is

needed to be achieved, the experimental tests of the EBF and
BRB are explained and modelled here. After the demonstration
of the modelling accuracy, an EBF and a BRBF are designed
having moment link. Then, three extreme earthquake records of
Tabas,  Chi-Chi,  and  Northridge  are  selected  for  further
analyses.  Finally,  the  designed  EBF and  BRBF are  analysed
while being subjected to these earthquake loads.

2.1. EBF

2.1.1. Experimental Test of EBF

A steel  EBF,  which  was  tested  experimentally  [30],  was
modelled  to  establish  the  verification  of  the  modelling.  The
EBF had a hollow rectangular cross-section. Fig. (1) shows the
setup of the experimental test of the EBF. The overall height
and width  (L)  of  the  test  specimen were  3150 mm and 3660
mm,  respectively.  A  hydraulic  actuator  was  employed  to
transfer  the  horizontal  force  to  a  loading  beam.  The  beam
distributed  the  load  to  clevises  equally  at  the  top  of  each
column. The guidelines of ATC-24 [31] were followed for the
loading protocol. The steel of the link was A572 Gr. 50, having
a nominal yield strength of 345 MPa. HSS 178 × 178 × 12.7
(US-7 × 7 × 1/2) and W 310 × 143 (US-12 × 96) were utilised
for the braces and columns, respectively. Pinned supports were
used for the columns' ends. The moment resisting connections
were applied between the beam, columns, and braces.

2.1.2. Modelling EBF and Accuracy of Modelling

In  this  section,  modelling  the  EBF  using  the  ABAQUS
software  is  explained.  ABAQUS  is  a  highly  powerful
modelling software based on the finite element method and is
capable of solving problems from simple linear analysis to the
most complex nonlinear modelling. This software consists of a
very large set of elements so that any type of geometry can be
modelled  by  these  elements.  It  also  has  many  models  of
engineering materials that can be utilised in modelling a variety
of materials with different properties and behaviours, such as
steel and concrete.

All  the  characteristics  of  the  experimentally  tested  EBF,
which were mentioned in section 2.1.1, were considered in the
modelling. Since the size of the mesh had considerable effects
on the modelling results, different mesh sizes were tried for the
model  and  their  results  were  compared.  From the  conducted
convergence study on the mesh size of the modelling, it  was
concluded  that  the  mesh  size  of  50  mm  could  accomplish
accurate  results.  Thus,  this  mesh  size  was  adopted  for  the
modelling.

To  establish  the  modelling  accuracy,  the  link  shear-link

𝑒 >
2.6 𝑀𝑝
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Research projects have been conducted on the EBFs [2 -
14] and BRBFs [15 - 28] during recent decades. Also, a hybrid
monitoring technique,  which was on the basis  of  the  capture
and  analysis  of  a  digital  image  set,  was  presented  for
measuring  the  deformation  field  in  order  to  achieve
information about  crack propagation in structures  to  monitor
their state of health [29]. Whilst, the present study investigates
the  EBFs  and  BRBFs  with  the  moment  link  under  three
different  extreme  earthquake  loads.

To model the members of the EBF specimen, the 4-node
shell element S4R was used. The steel material was modelled,
taking  into  account  its  features.  A  bilinear  model  was
considered  for  the  steel,  which  had  kinematic  hardening
behaviour  to  take  the  progressive  hardening  and  softening
effects  into  consideration.  The  used  steel  material  model  is
displayed in  Fig.  (2).  σ  was  the  uniaxial  stress  and  ε  was  its
corresponding axial  strain.  For strains larger than εY,  a  strain
increment  dε  consisted  of  an  elastic  contribution  dεe  and  a
plastic contribution dεp.
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rotation  graph  was  achieved  from  the  modelling  result
(ABAQUS)  in  this  study  to  compare  it  with  those  of  the
experimental test and finite element [30]. These comparisons
are illustrated in Fig. (3). Considering the existence of a very
good  agreement  between  the  results  in  Fig.  (3)  from  their
behavioural  viewpoint  and  values,  modelling  the  EBF  was
verified.

2.1.3. Design of EBF Having Moment Link

The  geometry  of  the  EBF  was  the  same  as  that  in  the
modelling  accuracy,  however,  the  link  was  designed to  have
the flexural yielding behaviour following equation (1). Based
on the design, the length of the moment link was found to be
120 cm. Fig. (4) indicates the modelled EBF having moment
link.

Fig. (1). Setup of experimental test of EBF [30].
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Fig. (2). Steel material model [ 32 ].
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2.2. BRBF

2.2.1. Experimental Test of BRB

To  reveal  the  accuracy  of  modelling  the  BRBF,  an
experimentally tested BRB [33] was modelled here. In the test,
the  length  of  the  BRB was  60  cm.  The  cross-sections  of  the
steel core and steel tube were 80 × 8 mm and 120 × 120 × 3
mm,  respectively.  The  setup  of  the  experimental  test  of  the
BRB  is  presented  in  Fig.  (5).  As  can  be  observed  from  the
figure, the setup included a test specimen, a hydraulic actuator,

two  end  reaction  blocks,  and  an  auxiliary  rigid  member  for
facilitating  the  specimen  fitting.  Two  LVDTs,  as  the  global
displacement instrumentation,  were placed at  the ends of  the
specimen.  Further,  the  strain  gauges,  as  the  local
instrumentation, were installed throughout the specimen. The
connections  were  made  using  pin.  The  specimen  was  tested
under the cyclic load based on the recommendations mentioned
in FEMA 450 [34]. The yield stresses of the steel core and steel
tube  were  297.5  MPa  and  370  MPa,  respectively.  The
compressive strength of the concrete at 28 days was 30 MPa.

Fig. (3). Accuracy of modelling EBF.

Fig. (4). Modelled EBF with moment link.
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Fig. (5). Setup of experimental test of BRB [33].

2.2.2. Modelling BRB and Accuracy of Modelling

The  steel  material  of  the  BRB  was  modelled  similar  to
section  2.1.2.  The  concrete  was  modelled  using  the  concrete
material damage plasticity model as depicted in Fig. (6). The
total strain tensor ε was composed of the elastic part εel and the
plastic part εpl.  dt  and dc  were two scalar damage parameters,
which were ranged from 0 (undamaged) to 1 (fully damaged).
Isotropic  hardening  parameters  were  represented  by  the  ine-
lastic  compression  strain  and  the  cracking strain  
which were comprised of the plastic hardening strain εpl,h plus
the  residual  strain  owing  to  damages.  The  damage  states  in
compression and tension were respectively expressed by two
hardening parameters  and  which indicated the equiva-
lent plastic strains in compression and tension, respectively. σc,
εc,  and  σcu were  the  nominal  compressive  stress,  nominal
compressive strain,  and ultimate  compressive strength of  the
unconfined cylinder specimen, respectively. 7% to 10% of the
ultimate compressive strength σcu is generally taken as tensile
strength, σt0 , hence, the maximum value was considered for σt0

as  0.1σcu  in  the  current  research.  σt  was  the  uniaxial  tensile
response  of  the  concrete  with  regard  to  the  concrete  model
under tension load, while εt was its corresponding strain. E0 was
the modulus of elasticity.

The shell element S4R was considered for modelling the
steel  tube,  while  the  solid  element  C3D8R  was  taken  into
account  for  modelling  the  steel  core  and  concrete.  All  the
features of the tested BRB in section 2.2.1 were adopted in the
modelling.  The  suitable  mesh  size  was  resulted  from  the
convergence  study  on  the  model  of  the  BRB,  which
accomplished  accurate  result.

To  demonstrate  the  accuracy  of  the  modelling,  the
modelling  result  (ABAQUS)  of  the  current  study  was
compared  with  the  results  of  the  experimental  test  and
numerical analysis [33]. Based on the similar behaviours and
close values resulted from the comparison of the curves in Fig.
(7), the accuracy of modelling the BRB was uncovered.

2.2.3. Design of BRBF Having Moment Link

The geometries of the frame and moment link length are
like those of the EBF in this study, while the braces are BRB
here. Following the verified modelling method, the BRBF with
moment link was modelled considering all the specifications in
section  2.2.1.  The  modelled  BRBF  with  moment  link  is

displayed  in  Fig.  (8).

3. EARTHQUAKE RECORDS

Three different extreme earthquake records of Tabas, Chi-
Chi, and Northridge were selected to load the modelled EBF
and BRBF in their analyses. Characteristics of these records are
summarised in Table 1. Mw, PGA, PGV, and PGD, respectively
denote  the  magnitude  of  the  earthquake,  peak  ground
acceleration,  peak  ground  velocity,  and  peak  ground
displacement.

4. ANALYSIS OF EBF AND BRBF HAVING MOMENT
LINK

The  EBF  and  BRBF  with  moment  link,  which  were
respectively  designed  in  sections  2.1.3  and  2.2.3,  were
analysed  nonlinearly  under  the  earthquake  records  of  Tabas,
Chi-Chi,  and  Northridge.  The  results  obtained  from  these
analyses  are  presented  and  discussed  in  the  following.

5. RESULTS AND DISCUSSION

5.1.  Lateral  Displacements  of  EBF  and  BRBF  Having
Moment Link

Graphs of the lateral displacements of the EBF and BRBF
are shown in Figs. (9-11 and 12-14), respectively. According to
Table  1,  the  hierarchy  of  the  records  in  terms  of  the  peak
ground acceleration was Tabas, Chi-Chi, and Northridge. The
same  hierarchy  could  also  be  observed  for  the  lateral
displacements  of  the  EBF  and  BRBF  in  the  figures  because
there is a direct relationship between the lateral displacements
of the frames and the peak ground accelerations of the records.
Also, comparison of the maximum lateral displacements of the
EBF and BRBF is illustrated in Fig. (15). Under the Tabas and
Chi-Chi  records,  the  BRBF  experienced  lower  lateral
displacements  than  the  EBF  because  the  BRBF  had  greater
stiffness than the EBF, which reduced the lateral displacement
of the frame and led to the desired conclusion. However, the
BRBF  under  the  Northridge  record  resulted  in  larger  lateral
displacement than its corresponding EBF because many other
parameters, such as the ratio of the structure frequency to the
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The  results  are  represented  as  the  lateral  displacements,
base shears, and energy dissipations of the EBF and BRBF, and
their  moment  link  rotations  below.  Also,  Table  2  lists  the
results  achieved  from  the  analyses  of  the  EBF  and  BRBF.
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earthquake frequency, the record duration, and the earthquake
energy,  can  also  affect  the  dynamic  response  of  structures.

Therefore,  these  parameters  bring  many  uncertainties  in  the
prediction of the dynamic performance of the structures.

Table 1. Characteristics of records.

Earthquake Year Mw (Richter Scale) PGA (g) PGV (cm/s) PGD (cm)
Northridge 1994 6.70 0.349 32.25 9.30

Chi-Chi 1999 7.70 0.89 98 15.85
Tabas 1978 7.40 0.928 111.35 91.10

Fig. (7). Accuracy of modelling BRB.
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Fig. (8). Modelled BRBF with moment link.

Fig. (9). Lateral displacement of EBF with moment link under Tabas record.
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Table 2 . Obtained results from analysed EBF and BRBF.

Bracing
System

Earthquake Maximum Lateral
Displacement (cm)

Maximum Base Shear
(kN)

Maximum Energy Dissipation
(kN-cm)

Maximum Link
Rotation (rad)

EBF
Tabas 4.63 3143 46159 5.2

Chi-Chi 3.29 2700 1847 3.7
Northridge 1.38 2767 16719 1.5

BRBF
Tabas 3.6 7719 94823 4

Chi-Chi 2.53 3587 3876 2.8
Northridge 2.12 3721 29706 4.8
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Fig. (10). Lateral displacement of EBF with moment link under Chi-Chi record.

Fig. (11). Lateral displacement of EBF with moment link under Northridge record.

Fig. (12). Lateral displacement of BRBF with moment link under Tabas record.

Fig. (13). Lateral displacement of BRBF with moment link under Chi-Chi record.
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Fig. (15). Maximum lateral displacements of EBF and BRBF with moment link under different records.

One of the most important characteristics of the near-fault
earthquakes is  the existence of  pulses  with large amplitudes,
especially in the velocity-time history. These pulses apply a lot
of energy to the structure during a short period of time, which
causes  the  structure  to  dissipate  this  energy  with  large
displacements.

5.2. Base Shears of EBF and BRBF Having Moment Link

Figs. (16-18 and 19-21) depict the base shear graphs of the
EBF and BRBF, respectively.  Also,  Fig.  (22)  compares their
maximum  base  shears.  In  accordance  with  Fig.  (22),  the
maximum base shears of the EBF under Tabas, Chi-Chi, and

Northridge  records  were  3143  kN,  2700  kN,  and  2767  kN,
which were respectively improved to 7719 kN, 3587 kN, and
3721 kN by using the BRBF under the same records. This issue
revealed the effectiveness of utilising the BRBF in increasing
the base shear capacity of the frame compared with the EBF
since the failure modes of the EBF and BRBF were different in
which  the  EBF  failed  mainly  due  to  buckling  of  the  braces
while  the  BRBF  failed  because  the  steel  core  of  the  braces
became  hinged  at  the  location  of  the  connections.  Also,  the
failure  of  the  BRBF  was  delayed  compared  with  the  EBF.
These  reasons  led  to  more  efficient  use  of  the  structural
capacity  of  the  BRBF  compared  with  the  EBF.

Fig. (16). Base shear of EBF with moment link under Tabas record.
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Fig. (14). Lateral displacement of BRBF with moment link under Northridge record.
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Fig. (17). Base shear of EBF with moment link under Chi-Chi record.

Fig. (18). Base shear of EBF with moment link under Northridge record.

Fig. (19). Base shear of BRBF with moment link under Tabas record.

Fig. (20). Base shear of BRBF with moment link under Chi-Chi record.
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Fig. (21). Base shear of BRBF with moment link under Northridge record.

Fig. (22). Maximum base shears of EBF and BRBF with moment link under different records.

5.3.  Energy  Dissipations  of  EBF  and  BRBF  Having
Moment Link

Energy  dissipations  are  other  results  achieved  from  the
analyses of the EBF and BRBF and their graphs are elaborated
in Figs. (23-25 and 26-28), respectively. Fig. (29) clarifies that
the maximum energy dissipations of the EBF subjected to the
Tabas,  Chi-Chi,  and  Northridge  records  are  46159  kN-cm,
1847  kN-cm,  and  16719  kN-cm,  however,  the  maximum
energy dissipations  of  the  BRBF under  the  same records  are
94823 kN-cm, 3876 kN-cm, and 29706 kN-cm, respectively.
Comparing these maximum energy dissipations concluded that
as  the  BRBF was  used,  the  energy  dissipations  of  the  frame
were enhanced compared with the EBF.

5.4. Rotations of Moment Link of EBF and BRBF

The rotations  of  the  moment  link  of  the  EBF and BRBF
were calculated using equation (2):

(2)

where,  L,  e,  Δ,  and  h  are  the  frame span  length,  link  length,
frame lateral displacement, and frame height, respectively.

Fig. (30) displays the comparison of the maximum moment
link  rotations  of  the  EBF  and  BRBF.  The  figure  obviously
expresses  that  utilising  the  BRBF generally  reduced  the  link
rotations  compared  with  the  EBF.  The  largeness  of  the  link
rotations of  both EBF and BRBF was respectively related to
the  Tabas,  Chi-Chi,  and  Northridge  earthquake  loads.  This
hierarchy  of  the  rotations  was  also  witnessed  for  the  lateral
displacements  of  the EBF and BRBF in section 5.1 because,
according  to  equation  (2),  the  link  rotation  and  the  lateral
displacement  of  the  frame  has  a  direct  proportion.  It  is
noteworthy  that  the  same  uncertainties  in  the  predictions
described  for  the  lateral  displacements  in  section  5.1  also
existed  for  the  link  rotations,  in  which  the  BRBF had  larger
link rotation than the EBF under the Northridge record.
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Fig. (23). Energy dissipation of EBF with moment link under Tabas record.

Fig. (24). Energy dissipation of EBF with moment link under Chi-Chi record.

Fig. (25). Energy dissipation of EBF with moment link under Northridge record.

Fig. (26). Energy dissipation of BRBF with moment link under Tabas record.
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Fig. (27). Energy dissipation of BRBF with moment link under Chi-Chi record.

Fig. (28). Energy dissipation of BRBF with moment link under Northridge record.

Fig. (29). Maximum energy dissipations of EBF and BRBF with moment link under different records.

Fig. (30). Maximum moment link rotations of EBF and BRBF under different records.
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