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Abstract:  This  paper  is  devoted  to  the  application  of  unilateral  models  to  the  stress  analysis  of  masonry  structures.  Some  2d
applications  of  what  we  can  call  the  simplified  masonry-like  model  for  masonry,  are  discussed  and  studied.  The  results  here
presented demonstrate that the unilateral model for masonry can be a useful tool for modeling real masonry structures. The main
technique here employed for applying the No-Tension model to structures is the systematic use of singular stress and strain fields
within the frame set by the theorems of Limit Analysis. A number of simple examples is discussed to illustrate the method.
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1. INTRODUCTION

The present work is concerned with the application of the theorems of Limit Analysis to unilateral masonry-like
structures. The unilateral model for masonry, that, though in a mathematically unconscious way, has been around since
the nineteenth century (see Moseley [1]), was first rationally introduced by Heyman in [2] and divulgated and extended
in  Italy,  thanks  to  the  effort  of  Salvatore  Di  Pasquale  [3]  and  other  members  of  the  Italian  school  of  Structural
Mechanics, such as the Romano brothers [4], Baratta [5], Del Piero [6], Como [7], Angelillo [8], Angelillo & Giliberti
[9 - 11], and Angelillo & Olivito [10]. The analysis of masonry-like materials can be conducted within the frame of
limit analysis, specifically by applying the static and kinematic theorems on the basis of admissible stress and strain
fields (see [12]). Here we focus on the static theorem, the main tool being represented in 2d by statically admissible
singular stress fields, in the form of line Dirac deltas applied on material lines. The support of these Dirac deltas can be
interpreted an internal bars/arches.

If such a structure can be created inside the masonry and it is compressed, then the masonry body is safe through
which the safety of the structure can be assessed. The use of singular stress fields for the problem of equilibrium of
masonry-like,  No-Tension  materials  in  2d,  has  been  recently  introduced  by  Silhavi  et  al.  [13]  in  and  applied  to  a
reinforcement  problem  by  De  Faveri  et  al.  in  [14].  Here  we  propose  a  simple  method  based  on  a  stress  function
formulation, from which both the shape of the structure and the force field inside it, are easily generated. The use of
folded stress functions for describing singular stress fields in elastic bodies was first introduced in Fraternali et al. [15] .

The general organization of the paper is as follows. Sections 2 is concerned with some basic notions concerning
singular  stress  and  strain.  In  Section  3  we  formulate  the  Boundary  Value  Problem  (BVP)  for  unilateral  masonry
materials  modelled  as  Rigid  No-Tension  (RNT)  materials,  that  is  unilateral  materials  for  which  the  latent  strains
(fractures) satisfy a normality condition with respect to the admissible stresses. The first tool that can be introduced for
applying the unilateral No-Tension model to masonry structures is the systematic use of singular stress and strain fields,
within the framework defined by the two theorems of Limit Analysis [16, 17]. In the final section a number of simple
examples are presented as illustration of the method.
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2. PRELIMINARIES ON SINGULAR STRESS AND STRAIN FIELDS

In this section the main notation and the basic notions of equilibrium and compatibility, in presence of singular
stress  and  strain  fields,  are  introduced.  Singular  strains  are  usually  considered  in  perfect  plasticity,  and  the  use  of
singular stress fields (though in a mathematically unconscious way) has been around since the nineteenth century (see
[18]). The use of singular equilibrated stresses for approximating plane equilibrium problems can be traced to the work
of Fraternali et al. [15], and for vaults to Block & Ochsendorf [19] and Fraternali [20]. It is only fairly recently that
Silhavi et al. (see [13]), have put forward a rigorous mathematical formulation of stress field singularities for masonry-
like  materials.  The  formulation  that  is  given  here,  instead,  is  rather  informal  and  based  mainly  on  geometrical
arguments. The matter treated and analysed here is not entirely new. Much of what is reported, apart from the classical
and more recent sources cited throughout the text, leans on a number of papers, by some of the present authors recently
published, or under print. In particular, on the application of singular stress and strain to Limit Analysis [16, 17]; on
numerical methods for unilateral materials [21]; and on vaults [22 - 25].

2.1. Load and Displacement Data

We consider a body, a domain Ω ϵ Rn (here n = 2), loaded by the given tractions s on the part ∂ΩN of the boundary,

and subject to given displacements u on the complementary, constrained part of the boundary 
We assume that the body undergoes displacements u such that the local deformations are so small that the infinitesimal
strain E(u) is a proper strain measure.

2.2. Equilibrated Stress Fields, Regularity of T

A stress field T is said to be equilibrated with (s, b), if it satisfies the equilibrium equations:

(1)

and the traction boundary conditions:

(2)

n denoting the unit outward normal to ∂Ω.

For some rigid perfectly plastic materials (such as rigid unilateral materials), less regular and even singular stresses
may be considered. In general, we admit that the stress can be decomposed into the sum of two (orthogonal) parts:

(3)

where  is absolutely continuous with respect to the area measure (that is  is a density per unit area) and  is the
singular part.

In the examples, the analysis will be restricted to bounded measures  whose singular part is concentrated on a

finite number of regular arcs, that is bounded measures admitting on such curves a density  with respect to the length
measure (that is special bounded measures with void Cantor part; for reference to these function spaces see [26]).

2.3. Compatible Displacement Fields, Regularity of u

The  displacement  field  u  is  said  to  be  compatible  if,  besides  being  regular  enough  for  the  corresponding
(infinitesimal) strain E(u) to exist, satisfies the boundary conditions on the constrained part ∂ΩD of the boundary:

(4)

As for the stress, here we consider the (infinitesimal) strain for rigid perfectly plastic materials, less regular and
even singular with respect to classical one. That is we consider strain that, in general, admit the decomposition by mean
of sum of two (orthogonal) parts:

(5)

divT+ b = 0 ,

Tn = s , on ∂ΩN ,

T̃ = T̃r + T̃s ,

u = u , on ∂ΩD .

Ẽ = Ẽr + Ẽs ,

∂ΩD = ∂Ω− ∂ΩN.

T̃r T̃r

T̃

T̃s

T̃s
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where  is absolutely continuous with respect to the area measure (that is  is a density per unit area) and  is

the singular part.  has support on the union of a set of linear 1d measure (the jump set of u) and a set of fractional
measure.

For simplicity, in the examples, we shall restrict to bounded measures  whose singular part is concentrated on a

finite number of regular arcs, that are bounded measures applying on such curves a density  with respect to the
length measure (that is special bounded measures with void Cantor part). For reference to such spaces and other issues
connected with  free  discontinuities,  the  reader  can consult  the  book by Ambrosio,  Fusco,  Pallara  [26],  and see  the
papers [27 - 29].

Remark 1. If u ϵ BD(Ω), that is u can be discontinuous, the b.c. u = u on ∂ΩD makes no sense. A way to keep alive
the b.c. of Dirichelet type is to identify the masonry body rather than with the domain Ω (usually an open set) with the
set  Ω  ∂.ΩD  and to assume that  u  must  comply with the constraint  u = u,  on the skin  ΩD,  and admitting possible
singularities of the strain at the constrained boundary. Then, from here on, we shall deviate from standard notation
referring to Ω as to the set Ω ∂ΩD.

2.4. Singular Stress and Strain as Line Dirac Deltas

Strain.  In  what  follows,  special  displacement  fields  of  bounded  variation  will  be  considered.  In  particular,
restricting to discontinuous displacement fields u having finite discontinuities on a finite number of regular arcs Γ, the
strain E(u) consists of a regular part Er , that is a diffuse deformation over Ω-Γ, and a singular part Es in the form of a
line Dirac delta, concentrated on Γ.

The jumps of u  along Γ,  can be interpreted as fractures. Consider a crack separating the body Ω  into two parts,
, along a straight interface Γ, of tangent t and normal m. On such a line, the jump of u is defined as:

(6)

due to a relative translation of the two parts, is considered. Here u+ is the displacement on the side of Γ where m points.

The displacement field is a piecewise constant vector field, discontinuous across Γ. The jump of u across Γ can be
decomposed into normal and tangential components:

(7)

Notice that, on any crack, incompenetrability of matter requires  (an unilateral restriction).

The  strain  E  corresponding  to  the  piecewise  constant  field  u  with  a  strong  discontinuity  on  the  line  Γ,  is  zero
everywhere on Ω-Γ and is singular across Γ:

(8)

Stress. If the stress field T is singular, say a Dirac delta on Γ, also the part of emerging on T can be Γ discontinuous.
The unbalanced emerging stress:

(9)

in  equilibrium,  can  be  balanced  by  a  stress  concentrated  on  Γ  (Fig.  1).  Referring  for  notations  to  Fig.  (1),  the
representation of the singular part Ts of T on Γ, is:

(10)

For  equilibrium,  calling  p  q  the  components  of  q  in  the  tangential  and  normal  directions,  and  denoting   the
curvature of Γ, the following equations must hold

∪

∪

ρ

[[u]] = u
+ − u

−,

[[v]] = [[u]] ·m , [[w]] = [[u]] · t .

E(u) = δ(Γ )

(
[[v]]m⊗m+

1

2
[[w]](t⊗m+m⊗ t)

)
.

q = (T+ − T
−)m ,

[[v]] ≥ 0

Ẽr Ẽr  Ẽs

 Ẽs

 Ẽs

 
Ẽ

P1 and P2

Ts = Nδ(Γ )t ⊗ t .
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(11)

Therefore q must be zero if Γ is straight.

Fig. (1). Stress singularity: forces acting on the curve Γ.

Kinks. Though the singularity lines Γ, for the stress T, that we consider are a.e. smooth, they can have kinks and
multiple points. At such nodes the equilibrium of forces transmitted to the nodes must be satisfied; then if the node is
inside the body and there are no concentrated external forces applied to the node there must be at least a triple junction.

Airy's Stress Function and Singular Stresses

In  absence  of  body  forces  (b =  0),  the  equilibrium equations  admit  the  following  solution  in  terms  of  a  scalar
function F:

(12)

This is  the general  solution of the equilibrium equations,  if  the loads are self-balanced  on any closed boundary
delimiting Ω (see [30]).

The b.c. ,  must be reformulated in terms of F.  Denoting x(s) the parametrization of 
with the arc length, the b.c. on F are:

(13)

in which dF/dv is the normal derivative of F at the boundary (that is the slope of F in the direction of n) and m(s),
n(s) are the moment of contact and the axial force of contact produced by the tractions s(s), on a beam structure having
the same shape of ∂Ω, and cut at the point s = 0. A simple example is shown in Fig. (2).

Fig. (2). Square panel under uniform pressure: (a). Corresponding boundary value m(s): (b), and normal slope n(s): (c).

Regular and singular equilibrated stress fields can be derived by stress functions meeting the prescribed b.c. on F
and dF/dv. A regular stress field is represented by a smooth F (see Fig. 3a), a singular stress field by a continuous but
folded F (Fig. 3b). The projection of a fold of F on Ω is called folding line and is denoted Γ. On a fold of F, the second
derivative of F, with respect to the normal m to the folding line Γ, is a Dirac delta with support on Γ. Therefore, along Γ
the Hessian H (F) of the stress function F is a dyad of the form

Γ''pⅆs

qⅆs
N(s)

p

x1

x2

O

s

L L

L

L

n(s)

x1

x2

O

s

m(s)

x1

x2

O

s

N ′ + p = 0 , N ρ+ q = 0 .

T11 = F,22 , T22 = F,11 , T12 = −F,12 .

F (s) = m(s) ,
dF

dν
= n(s) , on ∂ΩN ,

∂ΩNTn = s on ∂ΩN
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(14)

ΔmF denoting the jump of slope of F in the direction of the normal m to Γ (see Fig. 3c). Recalling the Airy's relation,
the corresponding singular part of the stress is:

(15)

where the axial contact force N is given by:

(16)

Fig. (3). Square panel under uniform pressure. Smooth Airy’s stress function corresponding to a homogeneous pressure inside the
body: (a); folded Airy’s function: (b); representation of the uniaxial and singular stress field corresponding to the folded Airy’s
function: (c).

3. THE RNT MATERIAL

3.1. Constitutive Restrictions and Equilibrium Problem

It is assumed that the body Ω ϵ Rn (here n = 2), loaded by the given tractions s on the part ∂ΩN of the boundary, and
subject to given displacements u on the complementary, constrained part of the boundary ∂ΩD, is in equilibrium under
the action of such given surface displacements and tractions, besides body loads b and distortions E (the set of data
being denoted: (u, E; s, b)), and undergoes small displacements u and strains E(u)1.

We point out again (see Remark 2) that here, the masonry structure is identified with the set: Ω ∂ΩD,  i.e.  it is
considered closed on Ω∂D and open on the rest of the boundary.

We consider that the body Ω is composed of Rigid No-Tension material, that is the stress T is negative semidefinite

(17)

the effective strain E* = E (u) - E is positive semidefinite:

(18)

and the stress T does no work for the corresponding effective strain E*:

(19)

In order to avoid trivial incompatible loads (s, b), it is assumed that the tractions s satisfy the condition:

(20)

1 When eigenstrains are considered, under the small strain assumption, the total strain E(u) is decomposed additively as follows: E (u) = E*+ E, E*

being the effective strain of the material.

H(F ) = ∆mFδ(Γ )m⊗m ,

Ts = Nδ(Γ )t⊗ t ,

N = ∆mF .

T ∈ Sym− ,

E
∗ ∈ Sym+ ,

T ·E∗ = 0 .

s · n < 0 , or s = 0, ∀x ∈ ∂ΩN .

∪
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Notice that in the plane case (n = 2) conditions (17), (18), can be rewritten as:

(21)

(22)

3.2. Statically Admissible Stress Fields

An equilibrated stress field T (that is a stress field T balanced with the prescribed body forces b and the tractions s
given on ∂ΩN satisfying the unilateral condition (17) (that is conditions (21)), is said statically admissible for a RNT
body. The set of statically admissible stress fields is denoted  and is defined as follows:

(23)

(Ω) being a function space of convenient regularity. Since for RNT materials, discontinuous and even singular stress
fields will be considered.

3.3. Fundamental Partition

To any statically admissible stress field T one can associate the following partition of the domain Ω = Ω ∂ΩD:

(24)

(25)

(26)

On introducing the spectral decomposition of T:

(27)

in Ω1 the stress is of biaxial compression, that is σ1 < 0, σ2 < 0, ; in Ω2 the stress is of uniaxial compression, that is T = σ
k  k, σ < 0; Ω3 is inert.

Notice that the form and the regularity of these regions depend on the smoothness of T.

3.4. Concavity of the Airy's Stress Function

In  absence of  body forces,  a  statically  admissible  stress  field  can be  expressed2  in  terms of  a  scalar  function F
(called Airy's solution, see § 2.4).

The constraint (21), translated in terms of F, reads:

(28)

then the Hessian H(F) of F, is negative semidefinite and the stress function F must be concave. Therefore, in absence of
body forces b, the equilibrium problem for a RNT material, can be formulated as the search of a concave function F,
taking on the part ∂ΩD of the boundary, a specified value and a specified slope.

Example.  As  a  simple  example  of  an  equilibrium  problem, we consider  the traction problem  depicted in  Fig.

(4a). Smooth and singular statically admissible stress fields can be easily derived from simple stress functions matching
the given boundary data.

A smooth solution can be derived from the stress function (here L = 1 is assumed):

2Univocally, if the body is simply connected or loaded by self balanced tractions on any closed boundary.

H

∪

S

⊗

tr T ≤ 0 , det T ≥ 0 ,

tr E∗ ≥ 0 , det E∗ ≥ 0 .

H =
{
T ∈ S(Ω) s.t. divT+ b = 0 , Tn = s on ∂ΩN , T ∈ Sym−

}
,

Ω1 = {x ∈ Ω s.t. trT ≤ 0 , detT ≥ 0} ,

Ω2 = {x ∈ Ω s.t. trT ≤ 0 , detT = 0} ,

Ω3 = {x ∈ Ω s.t. T = 0} .

T = σ1 k1 ⊗ k1 + σ2 k2 ⊗ k2 ,

tr T = F,11 + F,22 ≤ 0 , det T = F,11 F,22 − F 2
,12 ≥ 0 ,



352   The Open Construction and Building Technology Journal, 2016, Volume 10 Fortunato et al.

(29)

This F is a composite surface, flat in the region denoted  Ω3 in Fig. (4c), and strictly concave in Ω1. The graph of
such F is depicted in Fig. (4b). We leave to the reader to verify that the corresponding T is statically admissible, that is,
that such T matches the boundary data and belongs to Sym-.

Fig. (4). Wall beam under uniform transverse load: (a). Graph of the Airy’s stress function, corresponding to the smooth solution:
(b). Domain partition and one of the families of compression lines corresponding to the smooth solution: (c).

A  singular  statically  admissible  stress  field  is  derived  from  the  stress  function  F  depicted  in  Fig.  (5a).  F  is  a
continuous non-smooth function: the surface F, making (concave) folds along the lines indicated with 3, 4, 5 in Fig.

(5c), can be easily produced by prolongating the datum  with ruled surfaces having the prescribed slope 
at the boundary. The intersections of the four ruled surfaces emanating from the boundary (see Fig. 5a) give the folding
lines; the jump of slope orthogonal to the folding lines 3, 4, 5 of Fig. (5c), gives the value of the axial force along the
line:

(30)

Since the fold is concave the jump of slope is negative, then:

(31)

Fig.  (5).  Graph  of  the  folded  Airy’s  function,  showing  the  intersection  of  the  generating  surfaces:  (a).  Corresponding  domain
partition and principal lines of compression: (b). Support of the singular stress (solid lines 3, 4, 5): (c).

In Fig. (5b) the principal lines of uniaxial compression corresponding to the non smooth solution are reported. The
unbalance of this uniaxial stress field across the segments 3, 4, 5 of Fig. (5c), is equilibrated by the compressive axial
forces ,  transmitted by this sort of bar truss. The axial forces vary linearly along the bars; they give three balanced
forces at the common end of the bars (the triple junction) and zero forces at the far ends.

F =

{
−3

2p+ 2px2 , x2 < 1
2 (1− x21) ,

−1
2px

2
1 − 2p

(1−x2

2
)2

1+x2

1

, x2 ≥ 1
2 (1− x21) .

Ts = Nδ(Γ )t⊗ t .

N = ∆mF < 0 .

dF
dν

|∂ΩF |∂Ω
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3.5. Kinematically Admissible Displacement Fields

A compatible displacement field u, that is a displacement u matching the given displacements u on ∂ΩD for which
(E (u) - E) ϵ Sym+, i.e. such that the effective strain satisfies the unilateral conditions (22), is said to be kinematically
admissible for a RNT body.

The set of kinematically admissible displacement fields is denoted  and is defined as follows:

(32)

where Ω = Ω  ∂ ΩD and  (Ω) is a function space of convenient regularity. Actually, as we shall see, we will need
only to consider discontinuous functions u whose jump set is the union of a finite number of segments.

Examples. As a simple illustration of typical kinematical problems, we construct some admissible deformations for
the two example problems reported in Fig. (6). In (a) the effect of a given settlement η of the right foot, is considered. In
(b)  the  constraints  are  fixed  and  the  effect  of  the  distortion  E  =  α  ΔTI,  due  to  the  uniform,  positive  increment  of
temperature ΔT, applied to the right half of the strip, is studied.

Fig.  (6).  Examples  of  kinematical  problems.  Wall  loaded  by  uniform vertical  load  at  the  top  and  subjected  to  a  given  uniform
settlement η of the right foot: (a). Masonry panel subject to uniform thermal expansion of the right half: (b).

A kinematically admissible displacement, compatible with the given settlement, is shown in Fig. (7a); in Fig. (7b, c)
the strain components E11, E22 are graphically represented.

A kinematically admissible displacement for the second example is

(33)

(34)

Fig. (7). Compatible solution for the problem of Fig. (6a): (a). Corresponding (singular) strain components: (b), (c).

The corresponding deformation and the strain components E11, E22 are graphically represented in Fig. (8). We leave
to the reader to verify that the effective strain (E(u) - E) belongs to sym+3 and that the strain E, whose non-vanishing
components are depicted in Figs. (8b, c), satisfy the compatibility conditions (22) in a generalized sense.

K

∪ T

K = u ∈ T (Ω) s.t. u = u on ∂ΩD , (E(u)−E) ∈ Sym+ ,

u1 =

{
α∆Tx1(1− x22/L

2) , x1 < L ,

α∆Tx1 , x1 ≥ L ,

u2 =

{
α∆Tx2x

2
1/L

2 , x1 < L ,

α∆Tx2 , x1 ≥ L .
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4. LIMIT ANALYSIS

We have  seen  in  the  preceding  sections  that,  for  RNT bodies,  both  force  and  displacement  data  are  subject  to
compatibility conditions, that is the existence of a statically admissible stress field and the existence of a kinematically
admissible displacement field, are subordinated to some necessary or sufficient conditions on the given data. Here we
concentrate on necessary or sufficient conditions for the compatibility of a given set of loads (s, b), restricting to the
case of zero kinematical data (u, E). The definition of safe, limit and collapse loads are given first, and the propositions
defining the compatibility of the loads, that are essentially a special form of the theorems of Limit Analysis (LA), are
then discussed.

Fig. (8). Compatible solution for the problem of Fig. (7b): (a). Corresponding (singular) strain components: (b), (c).

4.1. Theorems of Limit Analysis

Recalling the definition of RNT materials, we can observe that the restrictions (18), (19) are equivalent to a rule of
normality of the total strain to the cone of admissible stress states. Normality is the essential ingredient allowing for the
application of the two theorems of Limit Analysis (see [31]). In order to avoid the possibility of trivial incompatible
loads (and simplify the formulation of the two theorems), assumption (i.e. that the tractions s applied at the boundary
are either compressive or zero) is made.

Admissible Fields

The rigorous proof of the two theorems of Limit Analysis requires to set the problem in proper functions spaces. For
RNT  materials  it  is  appropriate  and  convenient  to  define  the  sets  of  statically  admissible  stress  fields   and
kinematically admissible displacement fields , as follows

(35)

(36)

where a convenient choice for the function spaces (Ω) and (Ω) is:

(37)

SMF being the set of Special Measures (that is measures with null Cantor part) whose jump set is finite, in the sense that
the support of their singular part consists of a finite number of regular (n - 1) d arcs4.

With SMF* we denote the subset of SMF for which the support of the singular part is restricted to a finite number of
d (n - 1) segments.

Notice that, depending on the geometry of the structure Ω = Ω ∂ΩN and on the given loads, the set  can be void.
If  is void the load (s, b) is incompatible, in the sense previously specified (no possibility of equilibrium with purely
compressive stresses).

3 The assumption that the effective strain has to belong to Sym+, implies that, on a crack Γ, the form of the singular strain be Es = δ(Γ)Δvm m,
with Δv > 0, that is shearing discontinuities are forbidden.
4 We suggest the reader to consult the book [26] for a complete essay on SBV functions and measure spaces

H

K

H

H =
{
T ∈ S(Ω) s.t. divT+ b = 0 , Tn = s on ∂ΩN , T ∈ Sym−

}
,

K =
{
u ∈ T (Ω) s.t. u = 0 on ∂ΩD , E(u) ∈ Sym+} ,

S(Ω) = SMF (Ω) , T (Ω) =
{
u s.t. ∇u ∈ SMF ∗(Ω)

}
,

∪

TS

ٔ
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Strictly Admissible Stress Fields and Load Classification

In order to formulate the theorems of Limit Analysis, we need to introduce the following definitions.

On denoting  the work of the load  for the displacement u, the load can be classified as follows:

(38)

(39)

(40)

We also now introduce a useful definition. A stress field T  such that tr T < 0 and det T > 0,  is said
to be strictly admissible.

Notice that, if T is strictly admissible, then at each point of Ω (that is the open set Ω to which the fixed part of the
boundary ∂ΩD is added) it results:

(41)

σ1, σ2 being the eigenvalues of T at the point x.

Kinematic Theorem

If  is a collapse load (in the sense of item (1) above) then  is void.

Static Theorem

If a strictly admissible stress field T exists, then the load  is safe (in the sense of item (3) above).

Limit Theorem

If  is not void and there exists  then the load  is limit (in the sense
of item (2) above).

For the proof of these theorems we refer to the paper [31]. The reader must be warned that the proofs given by Del
Piero refer to a similar function space for the displacement but to a different functional setting for the stress (namely L2

(Ω)). In the present paper we assume that these theorem are still valid in the present larger setting for the stress and
smaller setting for the displacement5.

5. SIMPLE APPLICATIONS OF THE THEOREMS OF LIMIT ANALYSIS

5.1. Example 0. Compressed Wall/Pier

The first simple example we consider, is concerned with an elementary problem for which regular stress fields can
be  derived  from  the  stress  function  formulation.  The  example  shows  the  effect  that  a  slight  change  of  boundary
conditions, can have on the problem. The two simple BVP depicted in Fig. (9) are considered. The first one (Fig. 9a)
refers to a rectangular wall compressed at the two bases by uniform normal tractions. The second example (Fig. 9b) is
the same wall compressed at the top base by a uniform pressure load and fixed at the bottom base. By employing the
Airy's representation and by using the static and kinematic theorems, it can be shown that in case (a) the load is limit
and in the second case the load is safe.
5 For general stress and strain fields that can be line Dirac deltas on a finite number of regular arcs the internal work ∫ΩT.E is not defined. Considering
the restrictions which define the sets H and K, that is taking into account the constraints on T and E, the only case in which there are troubles in
computing the internal work (if T and E are so restricted) is when both the stress and the strain are singular on the same line Γ, the line is curved and
there is a stress discontinuity in the direction of the normal m to Γ. A way to avoid this is to allow stress singularities on curved lines but to assume
that the support of the jumps of u is a segmentation, that is a line formed by the union of a finite number of segments.

H

(ℓ is a collapse load) ⇔ (∃u∗ ∈ K s.t.
〈
ℓ,u∗〉 > 0)

(ℓ is a limit load) ⇔ (〈ℓ,u〉 ≤ 0, ∀u ∈ K and ∃u∗ ∈ K −K
00

s.t.
〈
ℓ,u∗〉 = 0)

(ℓ is a safe load) ⇔ (〈ℓ,u〉 < 0 , ∀u ∈ K)

σ1 < 0 , σ2 < 0 ,

∈

ℓ

 u∗ ∈ K − K00 such that 〈ℓ,u∗〉 = 0, ℓ

ℓ

〈ℓ,u〉

 ∀x∈ Ω

ℓ = (s,b)

H
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Fig. (9). Compressed pier (wall). Pure traction problem: (a), Mixed problem: (b). Corresponding data for F and dF/v for the two
cases.

The data for F and dF/dv at the boundary, in case (a), are shown in Fig. (9c). In this case the only concave surface
that can possibly satisfy the data shown in Fig. (9c) is the parabolic cylinder defined by:

(42)

The uniqueness of this F can be proved by observing that the surface defined by it coincides with the upper part of
the convex hull of the curve carrying the boundary datum for F. The properties of minimality of the convex hull ensure
the uniqueness of F and of the corresponding stress (see [20]), that is of the uniform uniaxial stress:

(43)

Since this is the only statically admissible stress field,  is a singleton and we can say that the structure, with this
load,  is  statically  determined  (see  Remark  4).  Note  that  based  on  the  definition  (3)  mentioned  above  and  on  the
theorems of LA, the load is not safe. It is actually limit (see Limit Theorem above) since by splitting the panel into two
parts along any vertical line Γ with a normal crack, the strain corresponding to this mechanism is a horizontal uniaxial
Dirac delta whose intensity has the value of the displacement jump along Γ:  the work of the load for this non-zero
mechanism is zero. Note that the strain corresponding to this mechanism and the unique statically admissible stress field
are reconcilable in the sense of condition (19), that is they represent a possible solution for the BVP. The fact that,
under these conditions, strain can increase indefinitely at constant load, is a typical feature of limit loads.

In case (b) the previous stress function can be corrected by adding a term to it. Note that the boundary is loaded only
on the lateral sides and on the top base (with the same load of case (a)), and that both the value and the slope of the
stress function can be modified along the bottom base of the panel (see Fig. 9d). The simplest correction with polinomia
one can think of, is

(44)

The corresponding stress is:

(45)

The trace and the determinant of T are then:

(46)

(47)
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If h  then tr T is always negative. If  a (IN SLANTED CHARACTER), then tr T is negative
on Ω if:

(48)

and det T is positive on Ω if:

(49)

Then T  is  negative definite on Ω,  and the load is  safe,  on the basis  of  the Static Theorem of LA, if  the second

inequality holds. For example, for a square panel, if one takes , then the stress given by the above expression
is strictly admissible and the load is safe. In Fig. (10) the stress functions employed for cases (a) and (b) are shown side

by side for comparison, in the special case h = 2a, and putting for case (b),  .

Fig. (10). Compressed pier (slender wall): in (a) Airy’s stress function for the traction problem. In (b) Airy’s stress function adopted
for the mixed case.

Notice that the negative definiteness of T in case (b) is not uniform, since on the lateral sides we must have det T =
0 and one of the two eigenvalues of T must tend to zero as that part of the boundary is approached.

Remark 6 The bounds found on β give values of β vanishingly small with respect to p, as the ratio h/a increases; if
one takes β/p as a sort of measure of the safety level of the load with respect to collapse: then slender walls, under this
kind of loading, tend to become less and less safe, as the ratio h/a is increased.

Remark 7  It is worth pointing out that the existence of a strictly admissible stress field does not imply that the
actual  state  of  stress  in  the  body  be  of  biaxial  compression.  If  the  material  is  rigid  in  compression,  any  statically
admissible stress has the same dignity and is theoretically admissible for equilibrium.

The choice  among these  fields  require  the  introduction of  more advanced constitutive  restrictions,  allowing for
shortening strains (see [21]). When elasticity is assumed it occurs that s.a. stress fields which are not strictly admissible
are preferable, on an energetic ground, to strictly admissible ones. Therefore, the material exhibits both biaxial and
uniaxial stresses states (and fractures) despite the existence of a strictly admissible stress field.

≤
√
2
2

a h >
√
2
2

β <
pa2

4h2 − 2a2
,

β <
pa2

24h2
.

ߚ  ൏


ଽ

ߚ ൌ


ସ



358   The Open Construction and Building Technology Journal, 2016, Volume 10 Fortunato et al.

Fig. (11). In (a) Airy’s folded stress function for the mixed problem represented in Fig. (9b). In (b) a scheme of the corresponding
stress is reported.

5.2. Example 1. Singular Stress Applications

As a very first elementary application of singular stress fields to limit analysis, we consider three simple examples
concerning plane cases: the first one regarding a rectangular panel of RNT material and the other two a rectangular
reinforced concrete beam subject to a distributed transverse load. In the last two examples the concrete is considered as
NRT and the reinforcements as 1d fibers carrying tensile loads. For the three examples, statically admissible stress
fields in Fig. (11) a singular stress solution for the mixed BVP of Fig. (9b) is constructed from a folded Airy's stress
function. In Fig. (12) such singular stress solution, which corresponds to a statically admissible stress field is smoothed
out Fig. (12c), producing a strictly statically admissible stress field are constructed, then this is a proof that the load is
either safe or limit, in the sense of the above definitions.

In the example of Fig. (13a) there is a panel rigidly supported at the bottom base and subject to a vertical force at
the center of the upper base. Two statically admissible stress fields of pure compression are shown. On the left a regular
state, consisting of a fan of uniaxial compressive stresses is considered. On the right a singular solution for which a
constant stress is concentrated along the center line is represented. As we observed before, we may think of the support
of the singular stress inside the panel as a 1d bar carrying an axial force. In the mathematical terminology such a stress
is  a  line  Dirac  delta  with  support  on  the  center  line.  Such  singular  stress  is  a  special  bounded  measure,  that  is  a
summable distribution.

Fig. (12). Smoothing of the folded stress function of Fig. (11). Sections of the folded surface and its smoothed transformation at x2 =
0: (a); the section of the parabolic cylinder corresponding to the solution of the traction problem is reported for reference. In (b), (c) a
3d view of the folded and smoothed surfaces is shown.
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Fig. (13). Examples of singular stress fields. Singular (right) and regular (left) statically admissible stress fields, corresponding to a
concentrated load applied at a point on the boundary: (a). Singular stress inside a reinforced concrete beam: (b), (c). Uniaxial stresses
emanate form the upper boundary, concentrated compressive stresses have support on the curved lines (represented by a double line
in the pictures), tensile concentrated stresses have support on the solid straight line at the bottom (the rebar). Below the curved lines
the stress is zero.

A second simple, but interesting, example is reported in Fig. (13b). The example is concerned with a rectangular
panel loaded by a uniform load at the upper base, supported by two vertical forces at two points on the lower base, and
representing a concrete beam, reinforced by a lower straight rebar and with no stirrups. In the statically admissible
stress field that is depicted in Fig. (13b) the reinforcing steel, simulated as a 1d straight fiber, carries a singular stress,
that  is  a  concentrated,  uniform,  tensile,  axial  force;  the  stress  field  in  the  concrete  consists  of  of  a  singular  part,
represented by a concentrated, compressive, axial force, applied on a curved arch, and a regular part, represented by
vertical uniaxial stresses located above the arch.

In the third example, reported in Fig. (13c), the same rectangular panel loaded by a uniform load at the upper base,
and supported by two vertical forces at two points on the lower base, again reinforced by a lower straight rebar, is also
reinforced  by  equally  spaced  stirrups.  In  the  statically  admissible  stress  field  that  is  depicted  in  Fig.  (13c)  the
reinforcing lower rebar simulated as a 1d straight fiber, carries a singular stress, that is a concentrated tensile axial
force, which, in this case, is piecewise constant in between the stirrups. The stress field in the concrete, instead, consists
of of a singular part, represented by a concentrated, compressive, axial force, applied on a set of curved arches, which
form in between the stirrups, and carry the load transmitted to them by the regular part of the stress (represented by
vertical uniaxial stresses located above the arches).

5.3. Example 2. Lintel Under Vertical and Horizontal Loads

A rectangular wall beam, supported at the bottom corners A,B, submitted to vertical and horizontal loads applied
along its top edge, is shown in Fig. (14a) to which we refer for notations. This element can be representative of lintels,
that is the transverse structures connecting the piers in masonry portals or in sequences of arches, when the effect of the
loads transmitted to the arch from other parts of the structure, prevails on the self load, and the diffuse effect of body
forces can be neglected.
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The lintel's lower edge is actually often curved (see Fig. (14a)), this feature is a kind of a stress state that we wish to
consider in the element, as we shall see below. We point out that the presence of this arched intrados is necessary for
equilibrium, if the effect of vertical body forces are considered.

We formulate the equilibrium problem of the lintel as follows.

The loads acting on Ω consists of a distributed load q, applied along the top edge of Ω and having two components
{q1, q2} in the reference reported in Fig. (14a). The supports A, B reacts with two forces RA, RB whose components are
denoted {H(A),-V(A)}, {-H(B),-V(B)}; the lateral and the lower edges are unloaded.

Restricting to at most uniaxial stress fields and denoting g = q1/q2 the slope of the applied load with respect to x2=y,
the stress field, in the upper part of the domain, is a uniaxial field in the direction of the compression rays emanating
from the top edge, whose slope with respect to x2 is g. Calling  the length along the (straight) top edge of the domain,
measured from O, we also assume that the slope g is so restricted:

(50)

that is, the initial and final slopes are zero (then the two extreme compression rays run along the lateral edges), and the
compression rays are extended from base to base and do not cross each other inside the rectangle enclosing Ω.

The stress field in the lower part of the domain is zero. The upper and the lower regions are separated by a common
boundary Γ, passing through A and B, that is parametrized in terms of  as follows:

(51)

carrying a concentrated axial force.

We denote H and V the horizontal and vertical components of the axial contact force N, arising on Γ in order to
equilibrate the stress jump 8. By imposing the equilibrium of the piece  of Ω represented in Fig. (14a), the following
set of differential equations is obtained.

Fig. (14). Lintel loaded by vertical and horizontal forces. Geometry of the panel: (a). Forces acting on the panel, compression rays
and arch: (b). Horizontal and vertical load for two special cases (c, e) and the corresponding equilibrium solutions (d, f).

8For the positive sign of these two components we refer to the reference reported in Fig. (14a).

g(0) = 0 , g(L) = 0 , −
τ
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, g′(τ)h0 ≥ 0 ,

Γ = {{xΓ } = {τ + g(τ)y(τ), y(τ)} , τ ∈ {0, L}} ,

T

℘



Limit Analysis for Unilateral The Open Construction and Building Technology Journal, 2016, Volume 10   361

(52)

to be solved for H, V, y with the boundary conditions:

(53)

 being an unknown position along the upper edge. In the special case in which the horizontal and vertical loads have
the form that is the vertical load is uniform, the horizontal load is parabolic, and the horizontal load resultant is half of
the vertical resultant, the solution is:

(54)

(55)

(56)

(57)

where,

(58)

(59)

The solution of this special case for  is reported in Fig. (14).

CONCLUSION AND FUTURE WORK

In the present paper, the Theorems of Limit Analysis for structures composed of Rigid No-Tension material are
formulated and applied to some simple examples.

The novelty of the approach we propose resides in the systematic use of singular stress and strain fields. Singular
strains allow to consider mechanisms of rigid blocks in unilateral contact, singular stresses, consisting in concentrated
stresses with support on 1d structures, render easy to find equilibrated stress fields of pure compression.

The use of the Airy's stress formulation is also introduced to facilitate the generation of statically admissible stress
fields.

The scope of this comprehensive introduction to Limit Analysis for masonry is not purely academic since the tools
introduced here could be implemented to construct computer codes for the structural analysis of masonry.

This is the current main activity of the authors of this paper.
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