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Abstract: The present paper investigates the influence of main cutting parameters on the machinability during turning 
process for three typical materials namely AISI D6 tool steel, Ti6Al4V ELI and CuZn39Pb3 brass, all three under dry 
cutting environment. Spindle speed, feed rate and depth of cut were selected for study whilst arithmetic surface roughness 
average (Ra) and main cutting force component (FC) were treated as quality objectives characterizing machinability. For 
the aforementioned materials a full factorial design of experiments was conducted to exploit main effects and interactions 
among parameters it terms of quality objectives. The results obtained from dry turning experiments were utilized as a data 
set to test, train and validate a feed-forward back propagation artificial neural network for machinability prediction 
regarding all three materials. The work presents the results obtained from the aforementioned experimental effort under an 
extensive state-of-the-art survey concerning neural network technology and implementation to machining optimization 
problems. 
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INTRODUCTION 

Machining is one among the four popular manufacturing 
processes, the other three being forming, casting, and joining 
[1]. Among these conventional machining processes, the 
attention has been paid to turning which is a type of a mate-
rial removal operation where a cutting tool is used to remove 
material from a revolved raw stock aiming to produce a final 
product. Turning is the primary operation in metalworking 
industry for producing axisymmetric components. Turning 
produces components, which have critical features that re-
quire specific surface finish and the best possible functional 
behaviour. Due to inadequate knowledge of the complexity 
of the process and factors affecting the surface integrity in 
turning operation [2], an improper decision may cause high 
production costs and low machining quality. The proper se-
lection of cutting tools and process parameters for achieving  
high cutting performance in a turning operation is a critical  
task [3]. 

In recent decades, considerable improvements were 
achieved in turning, enhancing machining of difficult-to-cut 
materials and resulting in improved machinability (better 
surface finish and smaller cutting forces) [4]. The forces act-
ing on the tool are an important aspect of machining.  
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Knowledge of the cutting forces is needed for estimation 
of power requirements and for the design of machine tool 
elements, tool-holders and fixtures, adequately rigid and free 
from vibration. Power consumed in metal cutting is largely 
converted into heat near the cutting edge of tool, and many 
of the economic and technical problems of machining are 
caused by this heating action. Moreover, the cost of machin-
ing is strongly dependent on the rate of material removal, 
and this cost may be reduced by increasing the cutting speed 
and/or the feed rate; however, there are restrictions to the 
speed and feed values above which the life of the tool is 
shortened excessively [5]. 

Cutting force calculation and modelling are one of the 
major aspects of metal cutting theory. The large number of 
inter-related parameters that influence the cutting forces (cut-
ting speed, feed, depth of cut, primary and secondary cutting 
edge angles, rake angle, nose radius, clearance angle, cutting 
edge inclination angle, cutting tool wear, physical and 
chemical characteristics of the machined part, cutting tool 
(coating type, chip breaker geometry, etc.) makes the devel-
opment of a proper model a very difficult task [6].  

The surface roughness describes the geometry of the sur-
face to be machined and it is interrelated with surface texture 
and surface integrity. The formation of surface roughness 
mechanism is very complicated and mainly depends on ma-
chining process [7]. Hence, it is very difficult to determine 
the surface roughness through analytical equations. 
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Although an enormous amount of cutting force and sur-
face roughness related data is available in machining hand-
books, most of them attempt to define the relationship be-
tween a specific number of process parameters whilst keep-
ing others constant [8]. Taking into account this observation 
it is not surprising that from the era of conventional machine 
tools to the present era of CNC machine tools, the prediction 
of cutting behaviour of processes and the optimization of 
machining parameters have been major areas of scientific 
and industrial research. 

Nowadays, due to the development of computer technol-
ogy, finite element and soft computing methods are being 
used extensively for modeling and optimization of machin-
ing processes [9, 10]. The soft computing differs from con-
ventional (hard) computing in that it is tolerant of impreci-
sion, uncertainty, partial truth and approximation. Soft com-
puting techniques include neural network (NN), fuzzy set 
theory, genetic algorithm (GA), simulated annealing (SA), 
ant colony optimization (ACO) and particle swarm optimiza-
tion (PSO); see Refs. [1, 11]. 

Artificial Neural Networks (ANNs) are robust computing 
modules, currently being used in many fields of engineering 
to model complex relationships which are difficult to be de-
scribed through physical models. ANNs have been exten-
sively applied to model various machining operations; either 
conventional (turning, milling, grinding) or non-
conventional [Electro-discharge machining (EDM), Abrasive 
water-jet machining (AWJM) etc]; see Refs [8, 12-16]. 

As far as turning is concerned, ANNs have been used for 
the prediction of cutting forces [8, 17]), surface roughness 
[5, 18-21]; dimensional deviation [18], tool-wear [20], tool 
life [22] and process optimization [23]. Of relevant interest 
are also the combinations of ANN with other soft computing 
techniques such as GA together with Taguchi experimental 
design; see for example Refs. [24-28]. 

ANN applications in engineering are numerous and the 
review of them is beyond the scope of the present research; 
only some additional examples are noted here. Zeng in [29] 
presented the use of NN in mechanics whilst Sha & Edwards 
in [30] discussed the application of NNs in materials science. 
Adeli in [31] reviewed the applications of neural networks in 
civil engineering whilst Petroutsatou et al. [32] as well as 
Nemeth [33] presented possible applications of NNs in con-
struction. In particular, Bilgehan & Turgut [34] applied ANN 
in order to predict the compressive strength of concrete. 
Moreover, an interesting application has been recently re-
ported (Asteris & Plevris [35-37], in the field of civil engi-
neering materials. The authors using available in the litera-
ture, both experimental [38] and analytical results [39-41]) 
on the behaviour of anisotropic materials such as masonry, 
developed a neural network for the modeling of masonry 
under biaxial stress state. Their results show the great poten-
tial of using NN for the prediction of the masonry failure 
under biaxial compressive stress. 

The present paper aims to the development of an artificial 
neural network capable of estimating/predicting the main 
cutting force (Fc) and surface quality (Ra). For this purpose, 
several Artificial Neural Network (ANN) architectures were 
examined for their performance in turning operation of three 

important engineering alloys (AISI D6 tool steel, Ti6Al4V 
ELI titanium and CuZn39Pb3 brass).  

Note that the optimization (minimization) both of the cut-
ting force (Fc) and surface quality (Ra) are crucial indicators 
of the improved machinability of an engineering material. 
Machinability is a recognizable property of a material but 
difficult to express quantitatively. Generally, the machinabil-
ity of a material is defined in terms of the following four 
factors: (1) surface finish and integrity of the machined part, 
(2) tool life obtained, (3) force and power requirements, and 
(4) chip control. Therefore, good machinability indicates 
good surface finish and integrity, long tool life, low force 
and power requirements, and type of chip that does not inter-
fere with the machining operation and is easy to collect; see 
Kalpakjian & Schmid [42]. 

ARTIFICIAL NEURAL NETWORKS (ANNs) BACK-
GROUND 

Structure of ANNs 

Even though there is not a single, or universally accepted, 
definition of ANNs, it is widely accepted that an ANN is a 
network of many simple processing “units” (also referred to 
as “elements”, “nodes” or “neurons”) each with a small 
amount of local memory and in some cases arranged in lay-
ers. Nodes are connected through communication “channels” 
(usually referred to as “connections”, “connection weights” 
or “weights”). Connections bear encoded arithmetic data. 
Nodes process only local data and inputs brought to them 
through the connections. From a scientific point of view, 
Artificial Neural Networks (ANNs) are systems consisting of 
a number of processing units or elements that calculate in 
parallel and whose functioning is determined by the network 
structure, the connection weights and the processing that is 
carried out on the elements or the nodes [43]. These systems 
tend to store empirical knowledge and to make it available 
for use similarly to the human brain. Knowledge is acquired 
through learning and it is stored in the connections between 
neurons [44].  

ANN Formulation 

Formulation of ANNs is the mathematical modelling of 
the biological neuron networks, so that they can perform 
complex, and “intelligent”, calculations similar to the ones 
performed by the human brain. Most ANN types require a 
“training” stage, during which connection weights are 
adapted regarding a set of training data. Hence, ANNs 
“learn” or “are trained” by examples. When trained properly, 
ANNs can “generalize” (e.g. predict output values) beyond 
the field of training data. Training algorithms commonly 
implemented are Gauss-Newton [45], Levenberg-Marquardt 
[10, 15], conjugate-gradients algorithms, etc. ANNs can op-
erate on parallel computer systems, since calculations on 
nodes are highly independent to each other. 

ANN Types 

In general, a large number of ANN types have been pro-
posed [46]. In the field of machining applications, the most 
commonly used types are Multilayer Perceptrons (MLP) and 
Radial Basis Function (RBF) networks, that belong to the 
Supervised learning - Feed forward ANN category, and Self-
Organizing Maps (SOM) that belong to the Unsupervised 
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learning - Competitive ANN category. Fig. (1) depicts a 
typical architecture of a feed-forward multi-layer perceptron 

- MLP network. It consists of four layers; one input layer, 
one output layer and two hidden layers. Any node of a given 
layer is connected through connection weights (wijk) to all 
nodes of the previous and the next layer. Apart from weights, 
biases (bij) are fed to each node. A node’s output is an activa-
tion function (non-linear, such as tanh or 1 / (1+exp (-x))) 
value, whose argument is the node’s sum of weights, plus the 
node’s bias. Training stage ultimately fixes wijk and bij values 
and it is concluded when all inputs and outputs are matched 
with a predetermined error. 
 

 

Fig. (1). Feed-forward multi-layer perceptron (MLP) with two hid-
den layers. 
 
Main Applications and Objectives of ANNs 

ANNs are mainly implemented in two major problem 
categories: (a) Classification or sorting problems, and (b) 
Value Prediction or Estimation of unknown functions. In 
classification problems, ANNs are tolerant to inaccurate data 
and can cope with vast training sets at which strict and fast 
rules fail, such as in Expert Systems. Moreover, almost any 
vector function defined at compact spaces can be approxi-
mated with a given accuracy by a feed forward ANN, if ade-
quate data and resources are available; see Refs. [47, 48]. 

“Case” or “example” is a vector whose values are pre-
sented to all input nodes of an ANN. This vector can also 
include the objective or output values. An input vector value 
is also called “input variable” or “independent variable”, 
while an output vector value is called “output”, “objective” 
or “dependent variable”. “Data sets” are matrices containing 
a number of “cases”. 

The main objective of ANNs is to generalize, thus to ac-
curately perform using new data. A data set presented to an 
ANN at any time is called “sample” and it is divided in three 
subsets: training subset, which is used for parameter fitting 
(learning), validation subset, which is used for network ar-
chitecture tuning, and test subset, which is used for accessing 
the generalization ability of a trained network. In the litera-
ture, the use of validation and test sets is often reversed [49, 
50]. 

Finding an ANN that performs optimally in new cases, 
while it doesn’t just memorize the already known cases with 
which it was trained, means that its performance is measured 
by an error function (e.g. mean square error, total absolute 
error, etc) when unknown –independent– data is presented to 

the network [49]. The validation set consists of these new 
cases. However, ANN efficiency is measured by a third –
test– set, since validation procedure may lead to ANN over-
fitting (data memorizing); see Markopoulos et al. [51]. 

Note that the origin, the development and the mathemati-
cal details for implementing the ANNs can be found in a 
number of reference works and/or review papers, see for 
example Haykin [44]; Dixit & Dixit [9] and Chandrasekaran 
et al. [1]; therefore they are not discussed here. 

EXPERIMENTAL 

Experimental Procedure 

Turning 

Turning experiments were conducted using a Kern Mod-
ell D18L conventional lathe. A SECO® coated tool insert, 
coded as TNMG 160404 – MF2 with TP 2000 coated grade, 
was selected as a cutting tool for the series of experiments 
performed. The tool had a triangular geometry with cutting 
edge angle, Kr = 55 . The kinematics of the longitudinal 
turning process is illustrated in Fig. (2a). A 3D cutting force 
system was considered according to standard theory of 
oblique cutting [6]; see also Fig. (2b). Note that the cutting 
force is of the most important yet least understood operation 
parameters of a machining operation [52]. In general, this 
force is represented by three components, namely, the power 
component (Fc), the radial component (Fr) and the axial (or 
feed) component (Ff) as shown in Fig. (2b). Of these three 
components, the greatest, normally, is the power component, 
which is often called the main cutting force (Fc). 

Note that the accurate determination of cutting forces is 
essential for process performance, for the evaluation of ma-
chining accuracy as well as for tool-wear estimation and for 
developing machinability criteria [53]. 

Test Material 

Three engineering materials extensively used in machin-
ing operations were tested.  

• A tool steel with commercial name Sverker-3®. It is a 
high-carbon (2.05%), high-chromium (12.7 %) tool steel 
alloyed with tungsten (1.1 %) identical to AISI-D6 grade 
with hardness 240 HB.  

• A titanium alloy, namely Ti-6Al-4V ELI; an Alpha-Beta 
titanium alloy which contains 6% alpha stabilizer (alu-
minium) and 4 % beta stabilizer (vanadium) by weight. 
Its hardness is 326 HB. It is very similar to Ti-6Al-4V 
(Grade 5), with the difference that Ti-6Al-4V ELI con-
tains reduced oxygen nitrogen, carbon and iron levels. 
Studies concerning the microstructure and machinability 
of Ti-6Al-4V alloy were reported by Arrazola et al. [54] 
and Vaxevanidis et al. [55]. 

• An industrial copper alloy, namely CuZn39Pb3 
(CW614N - Brass 583) typically used for machining ap-
plications. Its hardness is 130 HB). Studies concerning 
the microstructure and machinability of CuZn39Pb3 al-
loy were reported by Pantazopoulos [56] and Toulfatzis 
et al. [57]. 

All test materials was supplied in the form of Ø45 mm 
bars. 
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Fig. (2). (a) Kinematics of the longitudinal turning process and (b) Three-dimensional cutting force system. 
 
Measuring Techniques 

The surface texture analysis was performed using a Rank 
Taylor-Hobson® Surtronic 3+ profilometer equipped with the 
Talyprof® software. The cut-off length was selected at 0.8 
mm whilst 5 measurements were conducted on every pass at 
the longitudinal direction. Arithmetic average (or mean) sur-
face roughness (Ra) was selected as the representative sur-
face quality characteristic since it is by far the most com-
monly used parameter in surface finish measurement and for 
general quality control. Despite its inherent limitations, it is 
easy to measure and offers a good overall description of the 
height characteristics of a surface profile [2]. 

For the cutting forces measurements a Kistler® three-axis 
piezoelectric dynamometer type 9257B was used. During 
machining, tool wear was maintained within the limit as per 
ISO specification and no cutting fluid was used. 

Experimental Results 

The experimental procedure was designed using the Ta-
guchi method [58] which uses an orthogonal array to study 
the entire parametric space with performing only a limited 
number of experiments. For each material, the main cutting 
parameters (rotational speed - n, rpm, feed rate - f, mm/rev 
and depth of cut - a, mm) were assigned on a standard L27 
Orthogonal Array (OA). Three levels were specified for each 
of the three cutting parameters for each material. Table 1 
summarizes the experimental results and the final matrix for 
the ANN implementation as it is explained in a next section.  

It is mentioned here that Response Surface Methodology 
(RSM) and Taguchi's Design of Experiments (DOE) are also 
constitute trustworthy optimization strategies when it comes 
in machining but they are not presented since they are out of 
the scope in the present study. Research by Asiltürk & 
Çunka  [21] and Vaxevanidis et al. [59] are noted here as 
references for these optimization methods.  

MODELLING BY ARTIFICIAL NEURAL NET-

WORKS (ANNs) 

Neural Network’s Architecture 

Two ANNs were developed in order to estimate outputs 
for quality characteristics (Fc, Ra). Known for its capabilities 

on establishing neural network models, MATLAB 7.4® with 
associate toolboxes [60] was used for coding the algorithm. 
The 81 experimental data samples; see Table 1, were sepa-
rated into three groups, namely, the training, the validation 
and the testing samples. The division of data to the training, 
validation and testing samples was randomly performed 
(70%, 15%, and 15%, respectively. Training samples were 
presented to the network during training and the network 
was adjusted according to its error. Validation samples were 
utilized to assess the network’s generalization capability and 
to halt training when generalization stopped improvement.  

In general, testing samples do not affect training proce-
dure, whilst provide also an independent measure of network 
performance during and after training (confirmation runs); 
see Markopoulos et al. [15] and Kechagias & Iakovakis 
[61]). Even though standard procedure for calculating the 
proper number of hidden layers and neurons does not exist 
Kolmogorov’s Theorem or Widrow Rule may be used for 
calculating the number of hidden neurons mainly when it 
comes to complicated systems [44].  

The feed-forward with back-propagation learning (FFBP) 
architecture has been selected to analyze the performance 
measures. The network types which belong to this particular 
category, have an input layer of X inputs; one, or more hid-
den layers with several neurons; and an output layer of Y 
outputs. As a transfer function of the hidden layer, the hy-
perbolic tangent sigmoid was adopted; whereas for the out-
put layer, a linear transfer function was implemented.  

ANN Topology 

The topology of the two FFBP-ANNs is shown in Figs. 
(3 and 4), for Fc and Ra, respectively. The input vector con-
sists of the four parameters [Brinell hardness (HB), rota-
tional speed (n), feed rate (s), and depth of cut (a)]. The 
number of the hidden layers and the number of the neurons 
were selected and optimized after several trials (see Table 2 
and Table 3). The best topology for Fc ANN is the 4x14x1 
(one hidden layer) and for Ra is the 4x5x15x1 (two hidden 
layers); see also Table 2 and Table 3, respectively. 

For the selection of the NN topology, the trial and error 
method was used. First NNs with one hidden layer was 
tested but the results were vast. Then NNs with 2 hidden 
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Table 1.  Experimental results and matrix of the ANN implementation. 

 A/A Input parameters Objective functions – Performance measures

Exp. Exp.

Material 
Hardness 

(HB)

Speed 

n (rpm)

Feed 

S (mm/rev)

Depth of cut 

a (mm)
-10log (Fc) Fc (N) -10log (Ra) Ra (μm)

1 130 850 0.15 1.5 -22.9 195 -2.55 1.8 

2 130 850 0.15 1 -21.4 139 -2.64 1.84 

3 130 850 0.15 0.5 -18.3 69 -3.03 2.01 

4 130 850 0.1 1.5 -21.7 150 -2.30 1.7 

5 130 850 0.1 1 -19.9 99 -2.22 1.67 

6 130 850 0.1 0.5 -17.4 55 -1.84 1.53 

7 130 850 0.06 1.5 -20.5 113 -2.17 1.65 

8 130 850 0.06 1 -18.9 79 -2.12 1.63 

9 130 600 0.15 1.5 -22.3 171 -3.30 2.14 

10 130 600 0.15 1 -21.3 138 -2.45 1.76 

11 130 600 0.15 0.5 -18.6 73 -2.57 1.81 

12 130 600 0.06 1.5 -20.3 109 -2.81 1.91 

13 130 600 0.06 1 -18.9 79 -2.69 1.86 

14 130 420 0.15 1.5 -22.7 189 -2.50 1.78 

15 130 420 0.15 1 -21.1 130 -2.09 1.62 

16 130 420 0.15 0.5 -18.6 74 -2.64 1.84 

17 130 420 0.06 1.5 -20.3 108 -2.25 1.68 

18 130 420 0.06 1 -18.8 77 -1.52 1.42 

19 130 420 0.06 0.5 -16.3 43 -2.50 1.78 

20 130 420 0.1 1.5 -21.6 145 -1.58 1.44 

21 130 420 0.1 1 -20.3 108 -1.39 1.38 

22 130 420 0.1 0.5 -17.7 59 -1.49 1.41 

23 130 850 0.06 0.5 -18.0 64 -1.81 1.52 

24 130 600 0.06 0.5 -18.1 65 -1.81 1.52 

25 130 600 0.1 1.5 -21.7 149 -2.30 1.7 

26 130 600 0.1 1 -20.3 109 -2.25 1.68 

Brass 

CuZn39Pb3 

27 130 600 0.1 0.5 -17.7 59 -1.52 1.42 

28 240 850 0.15 1.5 -27.2 536 -4.21 2.64 

29 240 850 0.15 1 -25.0 320 -3.42 2.2 

30 240 850 0.15 0.5 -21.3 136 -2.62 1.83 

31 240 850 0.1 1.5 -25.3 344 -10.6 11.5 

32 240 850 0.1 1 -22.6 184 -8.85 7.69 

33 240 850 0.1 0.5 -17.4 56 -1.30 1.35 

AISI D6 tool 

steel 

34 240 850 0.06 1.5 -24.0 256 -8.67 7.37 
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(Table 1) contd…. 

 A/A Input parameters Objective functions – Performance measures

Exp. Exp.

Material 
Hardness 

(HB)

Speed 

n (rpm)

Feed 

S (mm/rev)

Depth of cut 

a (mm)
-10log (Fc) Fc (N) -10log (Ra) Ra (μm)

35 240 850 0.06 1 -22.0 160 -6.98 4.99 

36 240 850 0.06 0.5 -21.3 138 -5.64 3.67 

37 240 600 0.15 1.5 -27.2 536 -12.9 19.8 

38 240 600 0.15 1 -25.6 364 -13.0 20.01 

39 240 600 0.15 0.5 -21.8 152 -12.8 19.4 

40 240 600 0.1 1.5 -26.3 428 -12.9 19.87 

41 240 600 0.1 1 -24.3 272 -11.9 15.73 

42 240 600 0.1 0.5 -19.8 96 -11.4 14.07 

43 240 600 0.06 1.5 -24.5 284 -8.24 6.67 

44 240 600 0.06 1 -22.6 184 -8.06 6.4 

45 240 600 0.06 0.5 -18.5 72 -8.10 6.47 

46 240 420 0.15 1.5 -27.6 584 -12.8 19.3 

47 240 420 0.15 1 -25.7 376 -12.4 17.4 

48 240 420 0.15 0.5 -21.6 146 -11.4 13.87 

49 240 420 0.1 1.5 -26.5 452 -11.2 13.27 

50 240 420 0.1 1 -23.9 246 -11.9 15.53 

51 240 420 0.1 0.5 -20.4 112 -11.1 13 

52 240 420 0.06 1.5 -24.1 260 -8.28 6.73 

53 240 420 0.06 1 -22.7 188 -8.45 7 

AISI D6 tool 

steel 

54 240 420 0.06 0.5 -18.3 68 -11.9 15.53 

55 326 850 0.1 0.5 -21.2 132 -1.46 1.4 

56 326 850 0.1 1 -23.8 240 -2.04 1.6 

57 326 850 0.1 1.5 -25.1 330 -1.52 1.42 

58 326 850 0.18 0.5 -23.0 200 -1.03 1.27 

59 326 850 0.18 1 -25.4 352 -2.22 1.67 

60 326 850 0.18 1.5 -26.9 500 -4.14 2.6 

61 326 850 0.33 0.5 -24.5 288 -8.40 6.93 

62 326 850 0.33 1 -27.4 562 -10.9 12.47 

63 326 850 0.33 1.5 -29.0 800 -11.6 14.73 

64 326 600 0.1 0.5 -20.7 120 -10.3 10.93 

65 326 600 0.1 1 -23.5 226 -10.5 11.37 

66 326 600 0.1 1.5 -25.0 318 -8.12 6.49 

67 326 600 0.18 0.5 -22.6 182 -4.75 2.99 

Ti-6Al-4V 

68 326 600 0.18 1 -25.4 350 -4.06 2.55 



Evaluation of Machinability in Turning of Engineering Alloys The Open Construction and Building Technology Journal, 2014, Volume 8    395 

(Table 1) contd…. 

 A/A Input parameters Objective functions – Performance measures

Exp. Exp.

Material 
Hardness 

(HB)

Speed 

n (rpm)

Feed 

S (mm/rev)

Depth of cut 

a (mm)
-10log (Fc) Fc (N) -10log (Ra) Ra (μm)

69 326 600 0.18 1.5 -27.0 502 -5.97 3.96 

70 326 600 0.33 0.5 -24.3 270 -9.63 9.2 

71 326 600 0.33 1 -27.3 538 -9.50 8.93 

72 326 600 0.33 1.5 -28.8 760 -9.63 9.2 

73 326 420 0.1 0.5 -21.4 140 -3.40 2.19 

74 326 420 0.1 1 -24.1 258 -3.40 2.19 

75 326 420 0.1 1.5 -25.6 370 -3.44 2.21 

76 326 420 0.18 0.5 -23.7 236 -4.34 2.72 

77 326 420 0.18 1 -26.1 410 -5.37 3.45 

78 326 420 0.18 1.5 -27.5 570 -5.58 3.62 

79 326 420 0.33 0.5 -24.5 284 -9.21 8.34 

80 326 420 0.33 1 -27.5 564 -9.12 8.17 

Ti-6Al-4V 

81 326 420 0.33 1.5 -29.2 840 -9.00 7.95 

 

 

Fig. (3). Topology of the optimized FFBP ANN for Fc prediction.  
 
layers we applied and good results were obtained. Note also, 
that the use of two different (discrete) NNs leads to better 
results, especially for the case of Ra quality indicator. 
Moreover, “Best val. Perf.” was the criterion in order to se-
lect the “best” architecture. 

Levenberg-Marquardt algorithm (TRAINLM) was util-
ized to train the networks; whilst mean square error (MSE) 
was used as the objective function. It is noted here that Mean 
Squared Error (MSE) is the average squared difference be-

tween network output values and target values. Low values 
for Mean Squared Error indicate less error; consequently, 
zero value of MSE means no error at all. 

ANNs Performance Results 

Training Stage and Validation Performance 

The best validation performance and the training stage 
for each one of the two FFBP-ANNs addressed Fc and Ra are 
shown in Fig. (5a) and Fig. (5b), respectively. 
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Fig. (4). Topology of the optimized FFBP ANN for Ra prediction. 
 

Table 2.  Neural network topologies tested for ANN architecture – Fc. 

 4X12X1 4X13X1 4X14X1 4X15X1 

Training 0.999 0.993 0.994 0.995 

Validation 0.916 0.939 0.924 0.898 

Test 0.941 0.948 0.972 0.967 

All 0.996 0.970 0.976 0.967 

Best val. perf. 1.683 0.593 0.480 0.837 

epoch 4 5 3 1 

 

Table 3.  Neural network topologies tested for ANN architecture – Ra. 

 4X4X15X1 4X5X15X1 4X6X15X1 4X7X15X1 

Training 0.998 0.994 0.999 1 

Validation 0.719 0.807 0.670 0.776 

Test 0.724 0.796 0.854 0.489 

All 0.853 0.919 0.930 0.824 

Best val. perf. 12.871 4.729 6.404 7.897 

epoch 6 5 15 9 

 
ANNs Correlation  

Another indicator used for performance evaluation for 
network efficiency is the regression coefficient, (R). Regres-
sion values measure the correlation between output values 
and targets. The acquired results for both ANNs showed a 
very good correlation between output values and targets dur-
ing training. Specifically, for the first ANN (Fc prediction) 
the determination coefficients (R) for training, testing and 
validation data were found 0.994, 0.924 and 0.9972 respec-

tively; whereas for the second ANN (Ra prediction) the de-
termination coefficients (R) for training, testing and valida-
tion data were found 0.994, 0.807 and 0.796, respectively; 
see Fig. (5a) and Fig. (5b). 

CONCLUSION 

Cutting forces developed during machining processes 
and surface roughness of machined parts are of major impor-
tance for both industrial applications and academic research. 
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Fig. (5). Performance and training states: (a) for Fc, (b) for Ra. 
 
Through the specification of such quality objectives, process 
performance and machinability of materials may be effi-
ciently optimized. Artificial Neural Networks provide robust 
solutions when studying criteria reflecting machinability and 
quality. However, noise factors that occur during actual ma-
chining experimentation may strongly affect process results, 
hence making computational models and optimization mod-
ules prone to errors. Nevertheless, accuracy and reliability of 
results are two main benefits of soft computing techniques 
such artificial neural networks (ANNs). 

Through the implementation of the ANN approach, main 
cutting force (Fc) and average surface roughness (Ra) were 
investigated during the longitudinal turning of AISI D6 tool 
steel, Ti6Al4V ELI titanium and CuZn39Pb3 brass speci-
mens.  

The neural networks proposed were trained with experi-
mental data acquired from actual experiments. The best per-
formance was obtained from the ones with the FFBP archi-
tecture and topologies 4x14x1 (one hidden layer) for Fc 
ANN and 4x5x15x1 (two hidden layers) for Ra ANN, respec-
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tively. The results obtained indicate that the proposed model-
ling approach could be effectively used to accurately predict 
the main cutting force component and the mean surface 
roughness during turning of AISI D6 tool steel, Ti6Al4V 
ELI titanium and CuZn39Pb3 brass thus supporting decision 
making during process planning and providing a possible 
way to avoid time- and money-consuming experiments.  
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