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Abstract: Seismic analyses of concrete structures under maximum-considered earthquakes require the use of reduced 

stiffness accounting for cracks and degraded materials. Structural walls, different to other flexural dominated components, 

are sensitive to both shear and flexural stiffness degradations. Adoption of the gross shear stiffness for walls in seismic 

analysis prevails particularly for the design codes in the US. Yet available experimental results indicate that this could 

overstate the shear stiffness by more than double, which would hamper the actual predictions of building periods and 

shear load distributions among columns and walls. In addition, the deformation capacity could be drastically understated 

if the stipulated constant ductility capacity is adopted. This paper reviews the available simplified shear and flexural mod-

els, which stem from classical mechanics, empirical formulations and/or parametric studies, suitable for structural walls at 

the state-of-the-art. Reviews on the recommended flexural and shear stiffnesses by prominent design codes such as 

ACI318-11, Eurocode 8 and CSA are included. A database comprised of walls subjected to reverse-cyclic loads is formed 

to evaluate the performance of each model. It is found that there exist classical models that could outweigh over-

conservative codified values with comparable simplicity for practical uses.  
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1. INTRODUCTION 

Structures under maximum-considered earthquakes 
(MCE) are always liable to cracks even within low-to-
moderate seismicity regions. Appropriate definitions of ef-
fective stiffnesses for various structural members are essen-
tial to seismic analyses. However, accurate estimations of the 
stiffness of the member at the yield state are not straightfor-
ward. For instance, when a simple shear wall under a con-
stant axial load is subjected to a lateral load at the top until 
yielding occurs at the critical section, a constant reduction 
factor to the gross stiffness will seldom account for the ac-
tual effective stiffness at the yield state. Despite the constitu-
tional material properties such as the Young’s modulus of 
the reinforcement and the concrete, there are multiple domi-
nant factors that could influence its stiffness, including (a) 
the geometrical effect: low-rise squat walls (with an aspect 
ratio <1.5)(C6.7.1) [1] resist loading mainly by the strut- 
and-tie model whereas typical shear walls (with an aspect  
ratio > 3) resist the load by flexural action as a vertical canti-
lever; (b) the designed yielding mechanisms: conforming 
design usually requires the walls to yield in flexure so as to 
ensure ductile behaviour, whereas non-conforming designs 
without seismic details risk more adverse failures such as 
shear sliding failure which significantly dictate the effective 
stiffness at the yield state; (c) the intensity of axial loads: the 
stiffness deterioration in shear and flexural actions is mainly 
attributed to the formation of cracks;a higher axial load can 
effectively reduce the tensile cracks in concrete, thus increas-
ing the effective stiffness; (d) the deterioration in stiffnesses: 
the degradation of effective flexural and shear stiffnesses can  
 

*Address correspondence to this author at the Department of Civil Engi-

neering, The University of Hong Kong, Pokfulam Road, Hong Kong, PRC; 

Tel: 852 2859 2648; Fax: 852 2559 5337; E-mail: klsu@hkucc.hku.hk 

be different, and bond-slip deformation can be significant for 
walls without proper anchorage for the reinforcement; and 
(e) use of special details: diagonal reinforcement details can 
allow better ductility by forming a more efficient strut-and-
tie model, whereas the effective stiffness is also enhanced 
due to a reduction in cracks.  

Since thorough studies have been conducted on beams 
and columns which deform mainly in flexure, similar results 
and studies have been employed for walls. Most of the avail-
able design codes (e.g. ASCE41-06 [1], PEER [2], ACI318-
11 [3] and Eurocode 8 [4]) have accounted for the reduction 
in flexural stiffness by a simple reduction factor or a detailed 
estimation equation accounting for the effect of axial load 
and reinforcement ratios (e.g. Eq. (10-8) in ACI318-11 and 
CSA [5]) despite significant variations between these stipu-
lated reduction factors.  

Compared to flexural stiffness, limited literature has re-
viewed the cracked shear stiffness of reinforced concrete 
(RC) walls suitable for seismic analysis. Most of the avail-
able seismic codes allow no reduction in cracked shear stiff-
ness; for instance, FEMA356 [6], ASCE41-06 [1], ACI318-
11 [3], Guidelines for seismic design of tall buildings by 
PEER (Table 7.1) [2] recommend using gross shear stiffness, 
whereas Eurocode 8 (cl.4.3.1(7)) [4] recommends using a 0.5 
reduction factor for all stiffnesses including shear. Over-
conservative stiffnesses adopted in FEMA356 [6] and 
ASCE41-06 [1] have been highlighted by different research-
ers including Adebar et al. [7] and Ahmad [8]. Most seismic 
codes focus on effective flexural stiffness, as is the case with 
the latest revision made in ACI318-11 [3] which suggests 
that shear stiffness remains as the gross value (cl.8.8.2) or a 
0.5 reduction factor is applied to all gross sectional stiff-
nesses similar to Eurocode 8. A recent revision of this issue 
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by ATC72 [9] has commented that the limited test data and 
the scattering in the measured cracked shear stiffness prevent 
a conclusive value to be drawn, despite the fact that shear 
stiffness degradation can be as low as 1/10 or 1/20 based on 
RC membrane tests [9-11]. This is especially the case when 
diagonal cracking occurs in heavily reinforced members. 
Park and Paulay [12] have raised a similar issue concerning 
deep beams controlled by shear deformation. The reduction 
in stiffness can be as low as 0.15 due to radiating cracks 
formed at the bottom of the beam. With insufficient specific 
test data, Priestley et al. [13] recommend employing the 
same reduction factor for flexural stiffness in the shear re-
sponse for low-rise squat piers of bridges. For walls that are 
similarly sensitive to shear deformation, a suitable cracked 
stiffness is crucial for seismic design in load distributions 
and formations of plastic mechanisms. A thorough review of 
existing cracked shear stiffness models is necessitated and 
presented herein.  

This study aims to evaluate the performance of available 

effective stiffness models with specifications to the shear and 
flexure deformations. A database encompassing 43 walls 

subjected to reverse-cyclic loads is formed to validate each 

prediction model. Outperforming models suitable for practi-
cal uses with corresponding limitations are identified at the 

end of the paper. 

2. EFFECTIVE STIFFNESS FOR CRACKED-
SECTIONS  

2.1. Definition of Yield and Ultimate State 

The hysteretic load-displacement response of a wall un-
der cyclic pushover experimentation can be simplified as an 

elastic-perfectly-plastic response, as depicted in Fig. (1). 

This follows the proposal by Priestley and Park [14] and has 
been well adopted by other researchers, e.g. [15, 16]. The 

ultimate strength (Vmax) is determined from the response en-

velope by averaging the peak strength in both directions. 
Then, the effective stiffness is determined from the secant 

stiffness to the experimental responses with 0.75 Vmax. The 

elastic portion extends until it intersects with the perfectly 
plastic plateau at Vmax. The intersecting point defines the 

experimental yield displacement. The ultimate displacement 

is defined as where the post-peak strength drops below 80% 
of the Vmax. 

Presuming the initial stiffness (K0) is derived correctly 
from classical mechanics (e.g. Eq. (2)) or any appropriate 

finite element models, the suggested stiffness reduction 

factor in the following estimates the stiffness ratio between 
the secant stiffness at yield (Keff) and the initial stiffness, 

implicitly accounting for the axial load and reinforcement 

effects. Accurate modelling of the initial stiffness is related 
to the choice of finite element (e.g. 3D brick elements, 2D 

membrane/shell elements or even line elements with fibre 

sections coupled with shear springs), (b) adequate finite 
element discretisation, (c) correct definitions of material 

properties comprising but not limited to short-term Pois-

son’s ratio and Young’s modulus of steel and concrete. 
Details should be referred to the classical finite element 

textbooks and the theory of the elements in use, which are 

not covered here. 

 

Fig. (1). Definition of yield and ultimate deformations of a wall 

specimen. 

 

2.2. Shear Stiffness 

The effective shear stiffness for the elastic range of bi-
linear idealisation is defined by a reduction factor v as fol-
lows: 

kv,eff = vkv              (1) 

where kv,eff denotes the secant shear stiffness at the yield 
state and kv is the uncracked shear stiffness defined in Park 
and Paulay [12] for prismatic beam:  

kv =
Gbwd

f hw
         (2) 

where G is the shear modulus of the member which can be 
obtained by Ec/(2(1+v)) in which Ec and v are the short term 
Young’s modulus and Poisson’s ratio for the concrete, re-
spectively, bw and d denote the thickness and effective depth 
of the section, hw is the total length of the beam (or the 
height of the wall here) and f (= 1.2 for rectangular sections, 
= 1 for flanged or barbell-shaped sections) is a factor allow-
ing the non-uniform distribution of the shear stresses. The 
shear area of wall Av = bwd, where d can be assumed as 0.8 
lw for rectangular sections (cl.11.9.4) [3] and 1.0 lw for bar-
bell-shaped sections. Upon loading to the member capacity, 
significant diagonal cracks are formed which reduce the 
shear stiffness. This effect is accounted for by considering 
the analogous truss actions reported by Park and Paulay [12]. 
The total shear capacity (Vmax) is decomposed into those 
from the truss action (Vs) and the arch mechanism (Vc),  

Vmax = Vc +Vs              (3) 

Assuming 45 degree diagonal cracks and concrete struts 
are formed in the web, the shear stiffness of the truss (kv,45) 
under loading Vs is expressed as: 

Vs

v

= kv,45 =
v

1+ 4n v

Esbwd

hw
             (4) 

where v is the transverse (shear) reinforcement ratio, which 
can be expressed as Asv/(s·bw), in which Asv and s are, respec-
tively, the area and spacing of the stirrups, n is the modular 
ratio = Es/Ec and Es is the short term Young’s modulus of rein-
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forcement. As a result, if the applied shear load is less than the 
cracking strength (Vcr), v would be equal to 1, whereas if the 
applied load is larger than Vcr, the equivalent reduction factor 
for cracked shear stiffness can be estimated by: 

kv,eff =
Vmax

v

=
Vmax
Vs

kv,45   (5) 

v =
Vmax

Vmax Vc

kv,45
kv

  (6) 

As the axial compression (N) would close up the cracks 
and increase the contribution of shear resistance from con-
crete, Park and Paulay [12] suggested that Vc for beam pro-
posed in ACI318-71 [17] with the consideration of axial load 
effects could be adopted: 

Vc = 2(0.083+ 0.0005
N

Ag
) fc ' bwd  

3.5 fc ' (0.083+ 0.002
N

Ag
) bwd  (MPa)  (7) 

where fc’ denotes the cylinder concrete strength and Ag is the 
gross sectional area. The first term in Eq. (7) is derived from 
a conservative estimate of Vc for RC beams without shear 
reinforcement under 4-point bending [12], whereas the sec-
ond term accounts for the effect of axial loads in shear resis-
tance. Eq. (7) is consistent with the latest (cl.11.2.1.2 and 
cl11.2.2.2) ACI318-11 [3]. Various Vc have been proposed 
by different researchers and codes of practice, e.g. [13]. The 
New Zealand Concrete Code also introduces a reduction 
factor to Vc in the plastic hinge region when the axial load 
ratio (ALR = N/fc’Ag)  0.1. However, those formulations 
result in a less satisfactory prediction of v than using Eq. 
(7); thus they are not discussed here. 

Provided Vc is estimated from Eq. (7), the effective shear 
stiffness when diagonal cracks form can be estimated from 
Eq. (6) as: 

v =
Vmax

Vmax Vc

v

1+ 4n v

Es

G
f   (8) 

If the transverse steel has yielded, Vs (= Vmax – Vc) can 
simply be estimated from the shear steel ratio and corre-
sponding yield strength (fyv), 

Vs = v fyv bwd   (9) 

According to the state-of-the-art report by Fib in 2003 
[18], Priestley et al. [19] proposed a similar shear model for 
the design of bridge piers. The major departures from Park 
and Paulay’s model [12] are: (a) Vc is decomposed into Vc 
and VN which are the shear resistances from the concrete and 
axial load, respectively; (b) the inclusion of an additional 
term accounting for shear deformation of concrete ( v

conc
) 

under loading Vc; and (c) shear deformation by the truss 
mechanism ( v

truss
) has excluded the contribution from the 

shortening of the concrete strut: 

v
conc

=
2 Vc +VN( )
G0.8Ag

Ls
Vmax
Vy

 (10) 

v
truss

=
Vs s

EsAsv (d d ')
Ls
Vmax
Vy

 

for Vs = Vy Vc VN 0  (11) 

Vc = 0.29 fc ' 0.8Ag  (12) 

VN =
N(d c)

2Ls
 (13) 

where shear stiffness of concrete is defined as half of the 
gross value (G/2), 0.8Ag accounts for the non-uniform shear 
stresses distribution, c is the length of the compression zone 
for the concrete strut at the base (  0.2lw for walls [16]), Asv 
is the area of each stirrup, d’ is the effective depth of the 
compression reinforcement, and Ls is the shear span. Pro-
vided the shear strength at yield (Vy) is equal to nominal 
shear strength (Vmax) and d’  0, the shear deformation at the 
yield state ( v v

conc
 + v

truss
) is reduced to: 

v =
0.58 fc '

G
Ls +

N(d c)

G0.8Ag
+

Vs
Es vbwd

Ls  (14) 

v =
vmax

0.58 fc '

1

Ls
hw

+
N

0.8Ag

(d c)

hw
+
G

Es

Vs

vbwd

Ls
hw

f  (15) 

The above formulation is valid only when Vs/Asv  fyv, 
otherwise the yielding of stirrups results in the prevalence of 
shear failure.  

The most recent shear wall model was proposed by Krol-
icki et al. [16]. With modifications to the column models 
from Miranda et al. [20] and the USCD model from Priestley 
et al. [15], a full shear response envelope is defined to ac-
count for walls subjected to pre-emptive shear or flexure-
shear failure and has been verified against 26 wall specimens 
subjected to limited ALR  0.06.  

At the onset of flexural first yield (applied shear  
load = Fy), defined by the first occurrence of yielding in the 
longitudinal steel or yield strain in concrete = 0.002, the pro-
posed effective shear stiffness follows the same definition as 
Eq. (4) by Park and Paulay [12]. However, the shear resis-
tance by the truss mechanism (Vs) is defined differently: 

Vs = Fy Vc,sc  (16) 

where Vc,sc is the shear resistance by concrete when shear 
cracks occur:  

Vc,sc = p p fc '(0.8Ag )  (17) 

The coefficient p denotes the effect of shear-span-to-
depth ratio (Ls/lw); the coefficient  accounts for the benefi-
cial effect in shear resistance with an increasing volumetric 
ratio of longitudinal steel, which is a constant in the USCD 
model [15]; the coefficient p denotes degradation in shear 
strength with increasing displacement ductility (μ ),  

p = 0.29 MPa for μ   2, p = 0.05 MPa for μ   6.0, and 
values in between are interpolated. 

p = 3
Ls
lw

1.0           (18) 
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= 0.5 + 20 sl 1.0           (19) 

where sl is the longitudinal steel ratio. After the onset of 
first flexural yield, the shear stiffness remains unchanged 
until attaining the nominal shear strength (Vmax). Thus, the 
shear stiffness reduction factor at the yield state is: 

v =
Fy

Fy Vc,sc

v

1+ 4n v

Es

G
f            (20) 

Fy can be rigorously obtained from section analysis pro-
grammes by defining the concrete and longitudinal steel 
properties. Since v is relatively insensitive to Fy, it can be 
assumed to be approximately 0.75Vmax without introducing a 
significant error. The factor of 0.75 is determined by per-
forming the section analysis on squat walls with evenly dis-
tributed longitudinal steel and ALR = 0.1. The major differ-
ence between Eq. (20) and Eq. (8) is that the shear resistance 
of the axial load has not been excluded for Vs in Eq. (20). 
Fig. (2a-c) summarise the differences between the aforemen-
tioned approaches. 

Based on cyclic tests of 11 squat walls that failed in flex-
ure or shear sliding modes [21] and truss analogy, Salonikios 
[22] proposed an analytical equation to estimate the shear 
deformation of walls when diagonal shear cracking occurs. 

v =
d

2Es

(
Vs,w
Asv

+
2Vs,d
Asd

)
a s
2

2.25
           (21) 

where Asv and Asd are, respectively, the area of conventional 
shear reinforcement and diagonal reinforcement, Vs,w and 

Vs,d are the shear forces resisted correspondingly and as 
denotes the aspect ratio of the specimen. For walls with 
conventional web reinforcement and yielding in the shear 
steel (Vs,w = fyvAsv), the effective stiffness for shear can be 
simplified as: 

kv,eff =
Vmax

v

= Vmax
4.5Es

da s
2 fyv

           (22) 

v =
Vmax
bwdfyv

Es

G

4.5

a s

lw
d
f            (23) 

or v =
vmax G

yv

4.5

a s

lw
d
f            (24) 

where lw is the total depth of the wall section, vmax is the av-
eraged shear stress (Vmax/bwd) of the section and yv is the 
yield strain of the transverse steel. Unlike the estimations by 
Park and Paulay [12] and Krolicki et al. [16], the v here is 
inversely proportional to the square of the shear span (Vmax = 

Mmax/Ls, as = Ls/lw) if the nominal shear strength is controlled 
by the flexural capacity (Mmax). 

Besides the truss analogy model, Gérin and Adebar [10] 
proposed a general model, based on the force equilibrium 
and strain-compatibility of Mohr’s circle, to predict the load-
deformation response of conventionally reinforced concrete 
membrane elements under reverse-cyclic loads. Instead of 
treating the element as a homogenous material, the proposed 
approach introduces crack deformations to maintain the 
strain compatibility between the concrete and the reinforce-

 

Fig. (2). Shear deformation mechanisms of RC walls at the yield states: (a) overall deformation, contributions by (b) truss mechanism, and 

(c) shear beam mechanism. 
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ment. The predicted shear stiffness accounts for the quantity 
and yield strain of the reinforcement and the applied axial 
stress. 

Geff =
vmax

y

(i.e., v =
Geff

G
) (25) 

where vmax and y are, respectively, the nominal shear 
strength and shear strain of the element. The nominal shear 

strength can be determined from codes, e.g. ACI318-11 [3]. 

For shear dominated elements such as squat walls with slight 
axial loads, it can be defined as [10]: 

vmax = 0.25 fc ' + v fyv  (26) 

where fyv and vare respectively the yield strength and rein-
forcement ratio for the transverse steel of the wall. As the 

shear strain increases proportionally to the strain of the 

weaker reinforcement, the shear strain for the cracked-
section is defined as the onset of the yielding of the weaker 

transverse reinforcement for walls. 

y =
fyv
Es

+
vmax na

slEs

+
4vmax
Ec

 

for 0
vmax na

slEs

fyl
Es

 (27) 

where na is the applied axial stress on the element (compres-
sion as positive) and fyl and sl denote the yield strength and 
reinforcement ratio for the longitudinal steel, respectively. 
The contribution of each term to the overall shear strain is 
explained in Fig. (3a-c). It should be noted that the above 
formulation provides the lower-bound estimate of the shear 
stiffness particularly for slender walls, as transverse steel 
yielding and flexural cracks usually concentrate at the lower 

region of the wall. There are other available analytical mod-
els and experimental tests for determining the post-cracking 
shear stiffness of RC membranes. The Geff/G measured from 
those membrane tests can be as low as 0.1 to 0.05 of the 
gross value [11] which is not frequently observed for wall 
tests. This can be attributed to the aforementioned damage 
localisation issue.  

2.3. Flexural Stiffness 

For a prismatic member, the top loaded stick model with 
lumped plasticity at the base has prevailed in the literature 
and has often been used for studying the flexural mechanism. 
An example is illustrated in Fig. (4). Since the curvature is 
essentially proportional to the applied moment, the curvature 
distribution is almost triangularly distributed along the 
height of the member. At the yield state, the base curvature 
is assumed to reach yield curvature ( y) which is usually 
defined as the onset of concrete nonlinearity (the maximum 
strain in concrete c = c.y) or flexural steel yielding (the 
maximum strain in flexural steel sl = fyl/Es) [18]. Hence, the 
curvature equivalent to the strain gradient at the critical sec-
tion can be calculated as:  

y = min
fyl
Es

1

d xy
, c,y

xy
 (28) 

where c,y= 0.75 strain of concrete at the peak stress, fyl is the 
yield strength of the flexural steel and xy is the neutral axial 
depth. Fig. (4b) depicts the curvature distribution at the yield 
state. At the upper region of the member, the section remains 
uncracked and the actual curvature developed is smaller, 
whereas near the wall base, flexural-shear cracks occur 
which causes an increase in curvature along the member and 
is regarded as tension shift. Priestley et al.(Section 6.2.1) 
[15] concluded that an upward shift of lw/2 (e.g. one-tenth of 

 

Fig. (3). Shear deformation mechanisms of RC membranes at the yield states: (a) before deformation, (b) after shear deformation, and (c) 

contributions to shear deformations from various components. 
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the total building height for walls with aspect ratio = 5) of 
the curvature distribution can be reasonably assumed. In 
cases of triangularly loaded members, a linear idealisation of 
yield curvature along height is suitable to compensate the 
effects of tension shift and uncracked stiffness (curvature 
reduces to only one-fourth along 0.5 total building height 
from the top) so as to restore an equivalent displacement at 
the effective building height (= 0.7 total building height).  

With increased loading at the top, plastic curvature would 
concentrate near the base of the member. The ultimate curva-
ture is reached when the maximum strain in concrete reaches 
the ultimate strain corresponding to the degraded strength of 
0.85 of the peak strength of confined concrete [18]. 

u =
c,u

xu
           (29) 

where subscript u denotes the properties at the ultimate state. 
The distribution of plastic curvature is usually idealised as a 
parallelogram as shown in Fig. (4c). The top plastic deflec-
tion (

f
p) can then be correlated to the plastic rotation ( = p 

lph) at the base: 

p
f
= plph (hw

lph
2
)            (30) 

where the height of members hw, and lph is the length of the 
plastic hinge. The above model provides a brief review of 
the flexural mechanism in prismatic walls. It is noted that 
other studies, e.g. [15, 18], provide similar estimations to lph 
and the stick model mechanism. Since most of the experi-
mental results provide only the moment-curvature responses, 
instead of strain dependence, yield and ultimate curvatures 
are determined from the applied moment in compliance with 
Fig. (1). The effective flexural stiffness at the yield state 
(EIeff) can be derived by: 

EIeff =
Mmax

y

           (31) 

Thus, it can be quantified by a reduction factor ( f) ap-
plied to the gross sectional properties as: 

EIeff = f Ec Ig            (32) 

where Ig denotes the gross moment of inertia of the un-
cracked section without considering the effect of longitudi-
nal reinforcement. 

One of the earliest references accounting for the reduc-
tion in flexural stiffness due to cracks can be dated back to 
ACI318-71 [17]. The effective flexural stiffness for a pris-
matic member with tensile cracks under bending may follow: 

Ie =
Mcr

M
Ig + 1

Mcr

M

3

Icr  for M Mcr
           (33) 

Mcr =
fr Ig
lct

           (34) 

where M is the applied moment and the corresponding mo-
ment of inertia (Ie) is lying between uncracked (Ig) and fully 
cracked values (Icr), lct denotes the depth from the centroid of 
the section to extreme tension fibre (= lw/2 for rectangular 
section) and fr is the modulus of rupture of concrete = 
0.62 fc’ for normal weight concrete. At the yield state, the 
effective flexural rigidity (EIeff) can be determined by using 
M = Mmax for members designed to yield in flexure. The 
above expression is an empirical prediction which stems 
from the study by Branson and Heinhrich [23] on sim-
ply/continuously supported rectangular and T-shaped beams. 
The Icr has to be determined by principles using Eq. (28) and 
Eq. (31). 

Since then, continuous tests have been conducted on dif-
ferent components including structural walls. Yet significant 
variations in suggested effective flexural stiffness for walls 
remain amongst different codes. For instance, Eurocode 8 
(cl.4.3.1(7)) [4] suggests a reduction factor ( f) of 0.5, 
whereas FEMA356 [6] and ASCE41-06 [1] allow a factor of 

 

Fig. (4). Flexural deformation mechanism of RC walls at the yield and ultimate states: (a) flexural deformation profile; and curvature distri-

bution, (b) at yield state, and (c) ultimate state. 
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0.8 for uncracked sections and 0.5 for cracked sections in 
which the cracked sections are determined by checking the 
load demands against the modulus of rupture of concrete. 
ACI318-11 (cl.10.10.4.1) [3] has revised the values to 0.7 for 
uncracked walls and to 0.35 for cracked walls, respectively. 
Alternatively, Eq. (10-8) of ACI318-11 [3] allows a detailed 
estimation of effective stiffness for walls under compres-
sions, which stems from the studies by Khuntia and Ghosh 
[24] on RC beams and columns: 

Ieff = (0.8 + 25 sl )(1
M

lwN
0.5

N

N0

)Ig  

for 0.35Ig Ieff 0.875Ig  (35) 

where N0 is the nominal axial strength when axial load is 
applied with zero eccentricity. Since M / (lwN) becomes rela-
tively large in cases of small axial loads, an effective flexural 
stiffness of 0.35Ig is usually assumed for these cases. For 
non-prestressed members with conforming transverse steel, 
N0 can be estimated from Eq. (10-2) in ACI318-11 [3]: 

N0 = 0.8 0.85 fc 'Ag (1 sl ) + fylAg sl  (36) 

Based on the experimental results of high-rise core walls 
(aspect ratios  2), Adebar et al. [7] propose a more detailed 
guideline by stating the upper and lower-bound stiffnesses: 

Upper-bound Ieff = 0.6 +
N

fc 'Ag
Ig   Ig  (37) 

Lower-bound Ieff = 0.2 + 2.5
N

fc 'Ag
Ig   0.7Ig   (38) 

They emphasise the intensity of axial loads in controlling 
the cracks, similar to the detailed estimation by ACI318-11 
in Eq. (35); thus less reduction is required for the flexural 
stiffness. Eqs. (37) and (38) successfully bound the experi-
mental results by Adebar et al. [7], which found that the up-
per-bound stiffness could be used if the wall displacement 
was within 0.2 times of the yield drift, and the lower-bound 
stiffness closely matched the wall stiffness at yield. They are 
also recommended in ATC-72 [9] and CSA [5], which state 
that the lower bound stiffness is appropriate for walls under 
maximum-considered earthquake-level (MCE) analyses. 
Adebar et al. [7] suggested that the lower-bound stiffness 
values could possibly be increased for walls under higher 
axial loads. However, there are insufficient test data to verify 
it. 

Ahmad [8] has recently conducted a review on the flex-
ural stiffness of walls at various limit states. He discovered 
over-conservatism for wall stiffness in ACI318 [3]. Two 
approaches comprising an implicit method and an explicit 
method have been proposed to estimate the reduction in 
flexural stiffness. Only the second method is discussed here, 
whereby the reduction factor ( f) is applied to the whole sec-
tion of the wall to implicitly account for the shift of the cen-
troid for cracked walls. Based on the regression analyses of 
parametric studies, Ahmad proposed: 

f =
Ieff
Ig

=
Icr
Ig

+
Ignl
Ig

Icr
Ig

k1  (39) 

where Icr is the cracked moment of inertia of the cross sec-
tion, Ignl accounts for the effect of axial strain on the gross 
moment of inertia and coefficient k1 accounts for the tension-
stiffening effects. Without repeating the complicated deriva-
tions, details of Eq. (39) may be found in his paper (Eqs. 16 
to 24) [8]. 

Other noteworthy research on estimating the flexural 
stiffness of walls includes the study by Bachmann [25], 
where he recommended using:  

f =
12

1

Es

Ec
sl + nar '

fc '

fyl
 (40) 

where sl is the longitudinal steel ratio, nar is the ALR,  is 
the ratio of neutral axis depth to wall length and  is the ratio 
of internal lever arm to wall length. The equation is further 
simplified by assuming coefficient 1 = 2,  = 0.55, ’ = 0.4, 
 = 0.9, Es/Ec = 6 and fc’/fyl = 1/12. Thus Eq. (12) can be re-

written as [26]: 

f = 0.0018 v + 0.00012nar  (41) 

Priestley et al. [15] proposed a prominent concept of 
constant yield curvature for structural components under 
various reinforcement ratios, whereby the effective stiffness 
should be directly proportional to the nominal flexural ca-
pacity. A simple estimation of yield curvature of rectangular 
walls was proposed by Priestley and Kowalsky [27] based on 
numerical section analyses: 

y =
2 yl

lw
 (42) 

Thus, the effective flexural stiffness can be calculated 
provided the moment capacity is known using Eqs. (31) and 
(32): 

f =
My

y

1

EIg
 (43) 

3. COMPARISONS TO SAMPLED EXPERIMENTAL 
DATA 

3.1. Characteristics of the Population of Walls 

A total of 43 wall specimens have been collected [21, 28-
36] to form a database for evaluating the shear and flexural 
stiffness prediction models. The experimental data assem-
bled here encompass RC walls subjected to combined quasi-
static reversed cyclic loads and axial loads, except where a 
wall was monotonically loaded by Oesterle et al. [32]. The 
prime selecting criteria are the provisions of flexural and 
shear deformations with hysteretic responses. Exceptions 
comprise five wall tests from Su and Wong [30] and Zhang 
and Wang [31] which show no shear deformation record, but 
the walls were tested under high axial loads (ALR  0.2) 
which are rare and worthy of examination. The diversity 
both in geometrics and the standards of compliance are 
shown in Fig. (5a-b) respectively. The majority – 28 speci-
mens–are rectangular in shape with conventional reinforce-
ment, whereas the others are mainly of barbell-shape and/or 
have diagonal reinforcement. All of the specimens comply 
with ACI318, EC2 or EC8, or the Chinese seismic code 
(GB) with seismic details, except for those specimens 
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Fig. (5). Characteristics of the population of the walls: (a) sectional shapes, and (b) design codes. 

 

from Oesterle et al. [32], Ho [28] and Su and Wong [30] 
which are non-seismically detailed. The specimens from the 
last two references conform to BS8110. Most specimens 
were designed to yield in flexure except for the squat walls 

(aspect ratio  1) tested by Salonikios et al. [21, 34] (shear 
sliding) and Liu [33] (diagonal tension) which were suscep-
tible to shear failures. The reported failure modes comprise 
flexural failure, crushing of web or boundary elements, 

buckling of longitudinal reinforcement and 45 degree diago-
nal tensile cracks. In view of the scarcity of available data 
and the complexity of mixed failure modes, the specimens 
have not been further screened out by the types of failures. 

For ease of reference, the typical failures for the RC walls 
are depicted in Fig. (6a-e). 

Table 1 summarises the ranges of characteristics of the 
collected specimens. The aspect ratios (as) range from 0.9 to 
3.8. Most specimens have low ALRs from 0 to 0.1, apart 
from a few exceptions of 0.2 or higher. Most also consist of 
normal strength concrete with typical longitudinal  
(0.4%  s l  2.2%) and transverse (0.3%  sv  1%) rein-
forcement ratios. If diagonal reinforcement exists, it is re-
solved into equivalent longitudinal and transverse steel areas. 
Most yield strengths (fyl, fyv) of the reinforcement are be-
tween 400 MPa and 600 MPa.  

3.2. Comparisons of Effective Shear Stiffness 

Table 2 and Fig. (7) summarise the performance of each 
effective shear stiffness model discussed in Section 2 by 

 

Fig. (6). Typical failure mechanisms of RC walls: (a) shear sliding failure, (b) flexure failure, (c) diagonal tension failure, (d) diagonal com-

pression failure (crushing of web and/or boundary elements), and (e) hinge sliding failure. 
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Table 1. Range of data for the wall specimens. 

 Max. Min. Median 

Aspect ratio (as= hw/lw) 3.8 0.9 1.5 

Cylinder strength of concrete, fc' (Mpa) 53.4 20.9 34.1 

Young's modulus of Concrete, Ec (Gpa) 44.4 19.3 25.7 

Longitudinal steel content, sl (%) 2.2 0.4 0.9 

Transverse steel content, sv (%) 1.0 0.3 0.5 

Yield strength of longitudinal steel, fyl (Mpa) 596 405 520 

Yield strength of transverse steel, fyv (Mpa) 610 262 520 

Axial stress N/fc'Ag 0.50 0.00 0.06 

Equivalent axial stress (N+0.2 fyl * Asl)/fc'Ag 0.54 0.01 0.09 

Yield drift 0.0094 0.0018 0.0038 

vmax / fc' 1.45 0.11 0.48 

Effective shear stiffness reduction factor, v 0.86 0.07 0.27 

Effective flexural stiffness reduction factor, f 0.90 0.08 0.24 

Shear strain ductility, μ  5.5 1.4 3.9 

Curvature ductility, μ  32.0 2.8 7.5 

 

Table 2. Comparisons of predicted and experimental shear stiffness reduction factor v. 

Comparison on Pred. v / Exp. v 

References Mean Median CoV 

ACI318 (2011) 4.50 3.68 0.70 

Eurocode 8 (2004) 2.25 1.84 0.70 

Salonikios (2007) 1.48 1.21 0.67 

- based on specimens by Salonkioset al.(1999,2002) 1.04 0.96 0.68 

Park and Paulay (1975) 0.81 0.63 0.75 

Gérin and Adebar (2004) 0.59 0.51 0.66 

Krolicki et al. (2011) 0.51 0.47 0.71 

Priestley et al. (1996) 0.44 0.38 0.66 

 
comparing the ratio of the predicted stiffness to the actual 
stiffness. Without doubt, ACI318 and Eurocode 8 signifi-
cantly overestimate the stiffness averagely by a factor of 4.5 
and 2.25, respectively. However, v = 0.5 proposed by Euro-
code 8 is close to the 90

th
 percentile of the sampled speci-

mens (shown in Fig. (7c)); i.e. without alteration, this could 
still be a conservative estimate for the shear stiffness in 
walls. Comparatively, Park and Paulay’s model provides the 
best agreement with mean = 0.81, median = 0.63 and coeffi-
cient of variance (CoV) = 0.75, whereas Salonikios takes 
second place with mean = 1.48, median = 1.21 and  
CoV = 0.67. The models of Gérin and Adebar, Priestley et 
al. and Krolicki et al. understate the effective shear stiffness 

by more than a half. Fig. (7e-f) illustrates the similarities in 
predictions of the two latter approaches. 

Outstanding effective shear stiffness models are dis-
cussed in detail below. Fig. (8a-c) compare the predictions 
of Park and Paulay, Salonikios and Gérin and Adebar with 
experimental results. The necessary input for prediction is 
assumed to be the median values shown in Table 1 if it is not 
specified. The controlling parameters for each model are 
highlighted in these graphs. For brevity, the prediction 
curves for barbell-shaped walls are not shown but these can 
easily be determined from the relevant curve by adjusting the 
shape factor (f =1) and effective depth (d = 1) according to 
the formulations in Section 2. 
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Fig. (7). Variations of predicted shear stiffness to experimental shear stiffness by (a) Park and Paulay (1975), (b) Salonikios (2007), (c) Euro-

code 8 (2004), (d) Gérin and Adebar (2004), (e) Krolicki et al. (2011), and (f) Priestley et al. (1996). 

 

Park and Paulay’s model suggests an increase in v with 
the shear steel ratios depicted in Fig. (8a). This is in agree-
ment with experimental results of shear steel ratios between 
0.5% and 1.1%, despite the scattering for steel ratios being< 
0.5%. If the specimens with pre-emptive shear failures prior 
to reaching their flexural strength are ignored (low-rise squat 
walls by Salonikios (shear sliding) and Liu (diagonal ten-
sion)), the prediction by Park and Paulay improves to  
mean = 0.91, median = 0.85 and CoV = 0.65. This indicates 
that Park and Paulay’s model is more appropriate for walls 
designed to yield in flexure. The model also shows a ten-
dency to understate the effective shear stiffness for diago-
nally reinforced specimens. When the diagonally reinforced 

specimens (Salonikios, Shaingchin et al.) are also ignored, 
the prediction can further be improved to mean = 0.99, me-
dian = 0.94 and CoV = 0.62. These two deficiencies are not 
unexpected due to the omissions of these effects in the truss 
analogy model.  

Fig. (8b) indicates the good match of Salonikios’s predic-
tion to his own dataset. However, for squat walls that yield 
in flexural mode (Ho’s specimens) and slender walls (aspect 
ratios  1.5), it tends to overestimate the shear stiffness by 
more than double. The extensive softening in shear for squat 
walls presented by Ho [28] compared to Salonikios et al. 
[21, 34] could be attributed to the following: (a) Ho’s speci-
mens are non-seismically detailed; and (b) they are designed 
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Fig. (8). Variations of shear stiffness against the normalised shear strength for (a) the Park and Paulay (1975) model, (b) the Salonikios 

(2007) model, and (c) the Gérin and Adebar (2004) model. 

 

to fail in flexure, whereas Salonikios’s low-rise specimens 
are susceptible to shear sliding failure. This indicates the 
pronounced effect of flexural cracks in reducing shear stiff-
ness, as well as the limited reduction in the shear stiffness by 
pre-emptive shear sliding failure localised at the base of the 
wall.  

Comparatively, the model of Gérin and Adebar under-
states the effective shear stiffness for most of the walls by 
half; see Fig. (7d). However, the model yields supreme re-
sults when only barbell-shaped walls and flanged walls are 
considered – mean = 0.88, median = 0.80 and CoV = 0.39 – 

as shown in Fig. (7d) and Fig. (8c) which depict the pre-
dicted shear stiffness against the normalised shear strength. 
A possible explanation for this is the likelihood of shear steel 
yielding in barbell-shaped and flanged specimens with en-
hanced moment capacities due to a higher moment of inertia. 
Over three quarters of these specimens failed by web crush-
ing or buckling of longitudinal reinforcement. The buckling 
of reinforcement is usually accompanied by spalling of con-
crete cover and yielding of transverse steel. Further evidence 
is that the shear stress demand on the truss mechanism  
(vmax - vc) is close to the shear steel capacity ( vfyv) for these 
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specimens. All of the aforementioned evidence supports the 
assumption of transverse steel yielding in deriving the 
model. The Gérin and Adebar model yields reasonable 
lower-bound shear stiffness for rectangular wall specimens 
due to the assumptions of shear steel yielding and fully 
cracked wall sections along the height.  

3.3. Comparisons on Shear Strain Ductility 

The ultimate shear strain for shear dominated elements is 

controlled by two types of concrete failures: brittle compres-
sion failure and relatively ductile shear failure [10]. For 

heavily reinforced elements subjected to high shear stress, 

the former is likely to occur, which can be attributed to ex-
ceeding the diagonal compression strength of concrete with 

reduction due to transverse tensile strains. The latter failure 

mode is associated with large shear deformation along the 
cracks resulting from excessive local damage such as con-

crete splitting and crushing around the reinforcement.  

FEMA356 [6] generalises the force-displacement curve 
by including uncracked stiffness up to the yield strength. 

Then, the strength remains constant to the point of ultimate 

shear strain equal to 0.0075 followed by rapid degradation to 
0.4 of the peak strength. By assuming the shear strain at 

yield is equal to 0.0025 [Eq. (5.2) of 18], this implies a shear 

strain ductility (μ ) of 3. For both the USCD approach [15, 
37] and the modified USCD by Krolicki et al. [16], the shear 

strength envelope declines drastically for displacement duc-

tility > 2 (controlled by p). If the wall fails in the shear 
mode, the shear strain ductility for V = 0.8Vmax can be esti-

mated as 3.45 [15, 37] or 3 [16]. Since the shear to flexural 

deformation ratio is assumed to be constant after yielding, 
the shear strain ductility is equal to the displacement ductil-

ity. Hence, these lower-bound estimates of shear strain duc-

tility coincide with FEMA356. For walls that yield in flex-
ure, the displacement ductility could be larger and this de-

pends on the ultimate displacement, which is usually defined 

by the intercepting displacement of the shear and flexural 
strength envelopes. In extreme cases, the ultimate displace-

ment ductility for walls over-reinforced in shear is solely 

dictated by the degradation of the flexural strength envelope. 

Alternatively, based on the cracked shear strain formu-
lated in Eq. (27) and 21 large-scale membrane element tests, 
Gérin and Adebar [10] recommend using:  

μ = 4 12
vmax
fc '

 for 
vmax
fc '

0.25            (44) 

The shear stress limit of 0.25 fc’ is adopted from the shear 
strength study by Collins et al. [38], to avoid concrete com-
pression failure. 

The prediction models for shear strain ductility of Gérin 

and Adebar, UCSD, Krolicki et al. and FEMA356 are com-

pared in Fig. (9). Gérin and Adebar’s model provides a rea-
sonably good lower-bound prediction of the shear strain duc-

tility demands, whereas other models suggest only a constant 

shear strain ductility of 3 and 3.45. These coincide with the 
predictions by Gérin and Adebar when normalised shear 

strength (vmax/ (fc’))  0.5. For walls susceptible to the shear 

sliding failure presented by Salonikios, the shear strain duc-
tility could be reduced to only half of the predicted limit. 

 

Fig. (9). Variations of shear strain ductility against the normalised 

shear strength. 

 

3.4. Comparisons of Effective Flexural Stiffness 

The ratios of predicted to experimental flexural stiffness 
at the yield state for different approaches are summarised in 
Table 3. The uncracked stiffnesses recommended by 
ASCE41-06, FEMA356 ( f = 0.8) and ACI318-11 ( f = 0.7) 
overstate the stiffness by a factor of 3 or more, whereas stiff-
nesses suggested in Eurocode 8 or the cracked walls in 
ASCE41-06, FEMA356 ( f = 0.5) andACI318-11 ( f = 0.35) 
provide a closer estimate; however, they still overstate the 
stiffness on average by a factor of 2 and 1.5, respectively. 
The upper and lower-bound stiffness models suggested by 
Adebar et al., adopted in the latest CSA [9], share similar 
behaviours but the lower-bound model provides a better es-
timation by overstating only 30%. As for the Ahmad implicit 
method and the Priestley and Kowalsky model, they are ca-
pable of predicting the actual flexural stiffness with slight 
overestimation: mean errors within 20%, median errors 
within 5% and CoVs of around 0.35. On the other hand, 
Bachmann’s model shows comparable capability with slight 
underestimation of the stiffness, at around 10%. Yet, the 
simplicity of the calculation in the Priestley and Kowalsky 
model and the Bachmann model should be appraised, par-
ticularly the latter which requires only the ALR and longitu-
dinal steel ratio as inputs.  

Graphical presentations for some of these methods, com-
prising the Bechmann, Priestley and Kowalsky models, 
lower and upper-bound estimates by Adebar et al.,  
Eq. (10-8) in ACI318-11 and the Ahmad implicit method, 
are depicted in Fig. (10). Despite the complexity of the cal-
culations, Ahmad’s implicit method allows a close 
approximation for flexural stiffness of walls ( f  0.8) under 
high ALRs (= 0.25 to 0.5, tested by Su and Wong [30], 
Zhang and Wang [31]). 

The experimental effective stiffness demonstrates less 
deviation in flexural stiffness models compared to those in 
shear stiffness models, which is reflected in the smaller 
CoVs and less scattering plots shown in Fig. (10). This im-
plies that those developed flexural models, either by classical 
mechanics with empirical observations (e.g., Priestley and 
Kowalsky, 1998) or by a parametrically determined model 
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(e.g., Ahmad’s implicit model), can satisfactorily capture the 
actual behaviour. It could also be attributed to design phi-
losophy which usually requires shear walls to be designed to 
yield in flexure.  

Fig. (11a) depicts the effective flexural stiffness of walls 
against the ALRs estimated by the Bechmann and Adebar  
et al. models. The upper and lower-bound stiffnesses esti-
mated by the Adebar et al. model effectively encompass the 
test data collected, whereas the prediction by Bachmann is 
capable of estimating the mean effective stiffness even for 
walls under high ALRs (  0.2). For the gradient of f against 
ALR, a distinctive difference between the experimental re-
sults and the lower-bound stiffness suggested by Adebar et 
al. is observed. This difference is prominent when  
ALR  0.2, and f could possibly reach 0.8 or higher in the 
presence of extremely high ALRs (  0.4). This agrees with 
the speculation by Adebar et al. [7] that the lower-bound 
stiffness could possibly be raised to account for a reduction 
in cracks under high axial loads. 

Fig. (11b) depicts the variations of effective flexural 
stiffness against normalised moments (Mmax/(blw

2
fc’)) for the 

Priestley and Kowalsky model. For barbell-shaped and 
flanged walls, equivalent rectangular sections with the same 
Ig are derived for estimating blw

2
. The underlying assumption 

in Priestley and Kowalsky’s model is that the yield curvature 
is almost constant and is independent of longitudinal steel 
ratios, i.e. the moment and flexural stiffness are directly pro-
portional to each another. This concept has gained promi-
nence since its introduction and is well explained in Fig. 
(11b). The specimens with higher yield strengths for longi-
tudinal steel would result to higher yield strains and yield 
curvatures, thus they tend to have lower effective flexural 
stiffness, provided the moment capacity is the same. The 
close approximations to experimental yield curvatures, 
which are shown in Fig. (12a), further validate the yield cur-
vature formulation proposed by Priestley and Kowalsky. 

3.5. Comparisons of Curvature Ductility 

Fig. (12b) depicts the curvature ductility ( ) of the col-
lected specimens. As the hysteretic responses of some 
specimens might not record a significant drop in post-peak 
shear strength, difficulty occurs in defining the ultimate cur-
vature. Thus, a considerable number of samples are excluded 
here particularly for ductile structural walls. For other walls, 
the experimental curvature ductilities are compared to the 
predictions by Priestley and Kowalsky [27]. Based on the 
moment-curvature analyses on rectangular walls, they pro-
posed: 

Serviceability limit state: μ =
0.0174

2 yl

 (45) 

Ultimate limit state: μ =
0.072

2 yl

 (46) 

where yl denotes the yield strain of the longitudinal rein-
forcement. 

For walls lacking seismic details or which failed in shear 
sliding, the curvature ductility could be reduced to the serv-
iceability limit proposed by Priestley and Kowalsky, whereas 
few walls complying with codes that have seismic details 
(ACI1977, GB) have exceptionally low curvature ductility. 
Yet, a conclusion to the under-performance of detailing by 
these provisions cannot be directly drawn due to limited test 
data. Besides the influence by design philosophy, the in-
crease in ALR drastically reduces the curvature ductility, 
particularly for ALR  0.2.  

4. RECOMMENDATION ON THE EFFECTIVE 
STIFFNESS OF WALLS FOR MODELLING 

4.1. Shear Stiffness 

In the case of seismic analyses, expected stiffness should 
be adopted for design [(cl. 8.8.2) in 3, 9, 15]. For wall

Table 3. Comparisons of predicted and experimental flexural stiffness reduction factor f. 

Comparison on Pred. f/ Exp. f 

References Mean Median CoV 

uncracked walls for ASCE41 (2006) or FEMA356 (2000) 3.37 3.35 0.53 

uncracked walls for ACI318 (2011) 2.95 2.93 0.53 

Adebar et al. (2007) upper-bound 2.74 2.62 0.47 

Eurocode, cracked walls for ASCE41 (2006) or FEMA356 (2000) 2.11 2.09 0.53 

Eq. (10-8) in ACI318 (2011) 1.59 1.54 0.45 

cracked walls for ACI318 (2011) 1.47 1.46 0.53 

Adebar et al. (2007) lower-bound 1.32 1.30 0.45 

Ahmad (2011) Implicit Method Ieff 1.18 1.05 0.35 

Priestley and Kowalsky (1998) 1.09 1.03 0.34 

Bachmann (2004) 0.91 0.86 0.37 

Ahmad (2011) Implicit Method Icr 0.78 0.73 0.41 
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Fig. (10). Variations of predicted flexural stiffness to experimental flexural stiffness by (a) Bachmann (2004), (b) Priestley and Kowalsky 

(1998), (c) Adebar et al. (2007) upper-bound, (d) Adebar et al. (2007) lower-bound, (e) Eq. (10-8) in ACI318 (2011), and (f) the Ahmad 

(2011) implicit method. 

 

members being fully loaded to flexural capacity, a mean ef-

fective shear stiffness of 0.3 can be reasonably assumed for 
walls designed to yield in flexure. For partly loaded walls  

(M > Mcr), shear stiffness deteriorates with the onset of flex-

ural cracks. An upper-bound stiffness of 0.5, consistent with 
Eurocode 8, may be an appropriate option and can generally 

be applied to all walls under MCE level. More precise predic-

tion models are also available: (a) the Gérin and Adebar 
model can be adopted when shear steel yielding is antici-

pated; (b) the Park and Paulay model allows a good approxi-

mation for walls that fail in flexure with or without seismic 
details; whereas (c) the Salonikios model fits better for squat 

walls that are susceptible to shear sliding failures and walls 

with diagonal reinforcement. Fig. (13a) and (13b) summarise 
the performances of the last two models by categorising the 

specimens into various design philosophies. Yet, the signifi-

cant scattering for the latter model could indicate that certain 
controlling parameters are not well accounted for. 
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Fig. (11). Variations of flexural stiffness against the (a) ALRs for Adebar et al. (2007) and Bachmann (2004) models, and (b) normalised 

moment capacity for the Priestley and Kowalsky (1998) model. 

 

 

Fig. (12). Variations of (a) the yield curvature against the wall length, and (b) the curvature ductility against the ALR for the Priestley and 

Kowalsky (1998) model. 

 

As for the secant shear stiffness at the ultimate state, this 
can be determined by dividing the effective shear stiffness 
with the shear strain ductility, for which a lower-bound esti-
mate of 3 can be conservatively assumed if the shear sliding 
failure is prevented. However, if the wall is subjected to high 
shear stress demands (vmax/ (fc’)  0.5), then one may follow 
the prediction of the Gérin and Adebar model. 

4.2. Flexural Stiffness 

In general, the codified flexural stiffness for either un-
cracked or cracked walls overstates the effective flexural 
stiffness of walls at the yield state. Among these, the lower-
bound estimate following the Adebar et al. model, adopted 
in CSA, provides the best estimate by overstating only 30% 
on average.  

In addition, other readily available flexural models by re-
searchers like Bachmann, and Priestley and Kowalsky can be 
considered useful for practical purposes. The former model 
requires only the ALR and longitudinal steel ratio as input, 
whereas the latter model depends on the moment capacity 

and yield strain of longitudinal steel. In the case of high-rise 
shear walls subjected to large ALRs (  0.2), Ahmad’s im-
plicit method could serve as a verification tool. Despite its 
complexity and the requirement for more input parameters, 
such as applied moment and axial loads, it shows superiority 
in its application to walls under high axial loads in compari-
son to both the Bachmann model and the Priestley and Kow-
alsky model. The performances of these models are also 
summarised in Fig. (13c-f). 

4.3. Limitations and Further Studies 

The primary limitation of this study is the paucity of wall 
tests with shear deformation history included. Despite the 
pronounced relationships revealed by a small batch of 
specimens, some adverse effects which require further in-
depth study encompass: 

a) For walls that yield in mechanisms other than flexure 
(e.g. shear sliding, diagonal compression, anchorage fail-
ure), their influences on effective shear stiffness and 
shear strain ductility could be tremendous. For instance,
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Fig. (13). Summary of predicted effective stiffness compared to experimental stiffness under various design philosophies: Shear stiffness 

models by (a) Park and Paulay (1975), (b) Salonikios (2007); flexural stiffness models by (c) Bachmann (2004), (d) Priestley and Kowalsky 

(1998), (e) Adebar et al. (2007) lower-bound, and (f) the Ahmad (2011) implicit method. 

 

 specimens that yielded in shear sliding by Salonikios et 
al. exhibited high shear stiffness and low shear strain 
ductility. These studies are vital especially for non-
seismically detailed walls, as their yielding mechanisms 
under MCE are not properly controlled.  

b) The consequences of high ALRs (  0.2) on the effective 
shear stiffness, and the possible reduction of the curva-
ture and shear strain ductility.  

c) Diagonally reinforced low-rise squat walls exhibit in-
creased effective shear stiffness.  

d) Sliding shear deformation localised at the plastic hinge 
region also contributes to overall deformation. Some ex-
periments might not distinguish this from the general 
shear deformation. Although its contribution is relatively 
trivial at the yield state, e.g. Salonikios [34], for more 
precise analyses, its effect on the softening of the effec-
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tive stiffness should be accounted for, particularly for the 
ultimate state of squat walls (which could attribute to 
20% or more of the total deformation).  

Quantifications of the aforementioned effects remain dif-
ficult due to the lack of suitable wall data. Most of the col-
lected test data are from walls with low ALRs and that 
yielded in flexure.  

RC walls subjected to seismic loads could exhibit differ-
ent hysteresis loops due to the load-rate dependent strength 
and stiffness degradations. Dynamic tests allowing deriva-
tions of effective shear and flexural stiffnesses are summa-
rised here: Daniel et al. [36] tested two 6-storey RC walls 
using 1940 El Centro and 1971 Pacoima Dam earthquake 
ground motions, of which the walls at ground level exhibited 
an f = 0.4 to 0.5 and an v = 0.1; Carrillo and Alcocer [39] 
compare the hysteresis loops between wall specimens under 
cyclic or dynamic loads. Despite higher strength and stiff-
ness degradation rates revealed in the dynamic tests, the dif-
ferences are within 10% to 30% in the maximum shear 
strength and the drift ratio at peak load. For the two normal 
strength concrete wall specimens, they exhibited an f = 0.3 
to 0.4 and an v = 0.2 under the dynamic test. Compared to 
the analytical models, Gerin and Adebar’s shear model 
(mean predicted v/measured v = 1.14) and Bachmann’s 
flexural model (mean predicted f/measured f = 0.88) out-
perform the others for the four experiments above. Though 
more test data are required to reach a conclusion, the analyti-
cal models appear to maintain a reasonable accuracy for 
walls under seismic loads.  

Besides, the studies for effective stiffnesses are not lim-
ited to shear walls. It is more complicated for masonry in-
filled frames with or without perforations, which are not well 
discussed in most of the standards. Continuous research has 
been devoted to it, like Kakaletsis [40] has summarised the 
yield rotations of infilled frames from experiments which 
shows possibility in determining the yield stiffness provided 
the shear strength at yield can be correctly derived.  

CONCLUSION 

The adoption of a suitable effective stiffness is crucial in 
any seismic analyses, particularly the equivalent lateral force 
method and response spectrum analysis [41] which nonlinear 
properties of the RC members are usually not implicitly ac-
counted for in the material constitution of the numerical 
model. Thus, engineers have to make a suitable judgement 
on reducing the stiffness accordingly. Accurate predictions 
of effective stiffnesses for shear walls at the yield state are 
vital to seismic analyses primarily in three aspects: (a) accu-
rate loading distribution among elements, (b) determination 
of the sequences of mechanisms, (c) determination of the 
ultimate deformation capacity if the ductility capacity is pre-
scribed by codes, e.g. New Zealand Standards (cl.2.2, cl.4.3) 
[42] and Eurocode 8(cl.5.2.2.2) [4]. The use of codified ef-
fective stiffnesses could render structures over stiff. For in-
stance, the natural period of a single-degree-of-freedom can 
be simply expressed as 2 (mass/stiffness). For shear-
deformation dominated walls, use of intact shear stiffness 
following ACI318-11 or a 0.5 stiffness reduction factor fol-
lowing EC8 could result in underestimating the period at 
yield by 55% or 37% respectively, provided the measured 

shear stiffness reduction factor could be as low as 0.2 at 
yield. It leads to over-conservative design in forces and un-
derestimation of the deformation demands, indicating the 
imperative of reviewing effective stiffness models of walls. 

Effective flexural and shear stiffness models proposed by 
various researchers and codified references have been com-
pared in this study. Those models are verified against 43 
collected wall tests mainly subjected to reverse-cyclic loads. 
It is found that most of the stipulated stiffnesses have been 
over-conservative, particularly for the use of gross shear 
stiffness when flexural cracks have occurred, which can re-
sult in overstating the stiffness by a factor of 4. Yet, there 
exists simplified estimations which yield appropriate results, 
e.g. shear stiffness models by Park and Paulay, and Saloni-
kios based on classical truss analogy and Gérin and Adebar’s 
model based on Mohr’s circle model. Outstanding flexural 
stiffness models comprise the Bachmann model, the 
Priestley and Kowalsky model and Ahmad’s implicit 
method, the latter of which is relatively complicated but 
more precise for walls under high axial loads. Due to a pau-
city of test data, quantification of adverse influences on the 
effective shear stiffness, curvature and shear strain ductility 
by higher ALRs and yielding mechanisms other than flexure 
remain significant topics for further studies. 
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