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Abstract: Lateral-torsional buckling (LTB) and flange local buckling (FLB) are treated as two independent phenomena in 

AISC-LRFD 360-10 in which the flexural capacity of locally buckled beams is determined as the minimum value ob-

tained for the limit states of LTB and FLB. A 3-D nonlinear finite-element model using ABAQUS is developed in this re-

search to investigate the interactive flexural capacity of steel I-beams with compact web under moment gradient. It was 

found that the AISC approach is adequate for beams with compact or noncompact sections, however, too conservative for 

beams with slender flanges representing a considerable interaction between LTB and FLB limit states.  
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1. INTRODUCTION 

 Lateral-torsional buckling (LTB) is a global buckling 
mode in which the in-plane deflection of a laterally unbraced 
beam changes to a mixed lateral deflection and twisting. Ac-
cording to the AISC-LRFD 360 [1], the nominal elastic LTB 
moment capacity of I-beams under moment gradient (non-
uniform bending) is given by: 
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and Cb is the equivalent uniform moment factor that ac-
counts for the effect of moment gradient on the nominal 

critical moment capacity. The equivalent uniform moment 
factor for a concentrated loading at shear center is 1.35 as 
given in AISC-LRFD 360 [1].  

 For a beam that buckles inelastically, AISC-LRFD 360 
[1] gives a linear transition equation from the end of the elas-

tic region to the beginning of the plastic region. The basic 
assumption of the transition equation is that the beam cross-
section is a compact section which can reach its plastic mo-
ment capacity (Mp) for Lb Lp with no local buckling. For 

compact sections, the plastic moment resistance takes place 
prior to the occurrence of local buckling in their constituent 
plates. However, for noncompact and slender I-beam 
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sections (having either flanges or web with high slender-
ness), flange local buckling (FLB) or web local buckling 
(WLB) takes place prior to the attainment of their in-plane 
plastic moment capacity.  

 The nominal moment resistance for I-beam sections with 
noncompact or slender flanges is estimated as the minimum 
value of the independently estimated LTB and FLB moment 
capacities as per the Specification AISC-LRFD 360 [1]. In 
other words, the interaction between FLB and LTB is ne-
glected in the AISC-360 provisions for all ranges of local 
and global buckling slendernesses. The elastic moment ca-
pacity of laterally supported sections with slender flanges is 
determined as follows (AISC-LRFD 360 [1]): 
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In which f, Sx are the compression flange local slender-

ness and the elastic section modulus, respectively, and pa-

rameter kc is computed as 
  
4 / h / t

w
. 

Similar to the approach adopted for inelastic LTB capac-
ity prediction, AISC-LRFD 360 [1] gives a linear transition 
equation between plastic moment and reduced yield moment 
due to the presence of residual stresses (i.e. Mr = Sx (Fy – Fr) 
= 0.7My) to estimate the moment capacity of laterally sup-
ported sections with noncompact flanges as follows: 
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 There are few laboratory tests [2-4] and numerical stud-
ies on the lateral-torsional buckling of steel beams with lo-
cally buckled compression flanges. Wang et al. [5] investi-
gated the lateral-torsional buckling of locally buckled I-
beams using a FEA and the Winter’s effective width con-
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cept. They found that locally buckled beams have a consid-
erable post-local-buckling resistance; however, this may not 
be fully attained due to the occurrence of global LTB in the 
post-local-buckling range for beams with intermediate beams 
[5]. Bradford and Hancock [6] developed a nonlinear finite 
strip method (FSM) as an alternative to the Winter effective 
width [7] formula of a locally buckled beam to determine the 
strength of the beam to LTB phenomenon. They found that 
there is no significant interaction between local and global 
buckling modes for sections with thick flanges and thin 
webs, even though the Winter effective width calculation 
shows that there will be an interaction [6]. Bradford [8] stud-
ied the local buckling behavior of I-section beam-columns 
using a FSM and obtained the graphs of the FLB coefficient 
considering interactive flange-web buckling modes. White 
and Kim [9] state that assuming the FLB coefficient of 
kc=0.76 in the AISC-LRFD formula (i.e. Eq. 4) is sufficient 
to consider the LTB and FLB as two separate phenomena 
with no interaction. Although LTB and FLB phenomena are 
treated separately in AISC-LRFD 360 [1] with no interac-
tion, however, Mohebkhah and Chegeni [10] showed that for 
beams with slender flanges under pure bending, as the ratio 
Mn(LTB)/Mn(FLB) becomes more than one, there would be an 
interaction between FLB and LTB limit states and the AISC-
LRFD buckling moment prediction is too conservative. 
Kwon and Seo [4] conducted some experiments on welded 
H-section beams undergoing local buckling and lateral-
torsional buckling simultaneously. They concluded that local 
buckling prior to the LTB, has a significant post-local-
buckling strength reserve, however, reduces flexural moment 
capacity to some extent. Furthermore, Kwon and Seo [4] 
proposed a simple flexural strength formula for the direct 
strength method (DSM) design of welded sections under 
pure bending to account for the interaction between local and 
lateral-torsional buckling as follows: 
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in which the slenderness parameter  is defined as 

(Mn(LTB)/Mn(FLB))
0.5

. 

Although there are many studies in the literature on local 
buckling of I-beams, the effect of FLB on the LTB resistance 
of I-beams with different unbraced lengths and flange slen-
dernesses has not been studied under moment gradient. In 
this paper, the effects of unbraced length and FLB phenome-
non on the global LTB moment resistance of steel I-beams 
are investigated under a central concentrated loading at shear 
center. To achieve this end, a 3-d FEM model based on 
software ABAQUS [11] is developed for the nonlinear buck-
ling analysis of I-beams with a wide variety of local and 
global slendernesses. Then, the model is utilized to study the 
applicability of the AISC-LRFD method and DSM formula 
proposed by Kwon and Seo [4] in determining the moment 
capacity of locally buckled built-up steel I-beams with vari-
ous flange slendernesses (having compact webs) and un-
braced span-lengths. 

2. MATERIALS AND METHODOLOGY 

In this section a nonlinear finite element model is devel-
oped to simulate the inelastic LTB behavior of built-up I-

beams under moment gradient. The assumptions and specifi-
cations of the adopted modeling technique are described in 
the following subsections. 

2.1. Modeling Assumptions and Material Properties 

 The built-up I-beams were modeled using the finite ele-
ment software ABAQUS [11]. Two types of nonlinearities 
(i.e. material and geometric) are taken into account in 
ABAQUS [11] for the nonlinear finite element analysis of a 
given model. To include large displacement effects in the 
models, the nonlinear geometry option in ABAQUS [11] 
was utilized. For the numerical models the ABAQUS S4R 
element were used to represent the web, flanges and the end 
supports stiffeners. ABAQUS S4R element is a robust, gen-
eral-purpose element that is suitable for a wide range of ap-
plications such as explicit simulation of buckling deforma-
tions and plasticity effects. The S4R element is a four-node 
element with six DOFs per node, 3 translational and 3 rota-
tional. 

 Depending on the models’ flange width and web height, 
the flanges were divided into four to eight elements across 
the width and 6 to 9 elements were used to model the web. 
The same material properties were used for the flanges and 
web of the models. To include the material nonlinearity ef-
fect, the ABAQUS metal plasticity model with kinematic 
hardening was utilized. This model uses the von Mises yield 
criterion and associated plastic flow theory. An elastic-
perfect plastic model based on a simplified bilinear stress-
strain curve 

without strain hardening was assumed in the finite-
element model. The nominal yield stress, modulus of Elastic-
ity and Poisson’s ratio of 235 MPa, 200000 MPa and 0.3 
were adopted, respectively. Residual stresses were not con-
sidered in this study.  

2.2. Loads, Boundary Conditions and Solution Procedure 

 Simply supported built-up I-beams with different un-

braced lengths and flange slendernesses are chosen under a 

central concentrated loading at shear center (nonuniform 

bending) in order to determine their moment capacities. Ac-

cording to the AISC-LRFD 360 [1], compact and non-

compact limits for flexural members’ flange are taken as 

  
0.38(E / F

y
)1 2  and 

  
0.95(k

c
E / 0.7F

y
)1 2 , respectively. 

 The nonlinear analysis solution was achieved using the 
Newton-Rhapson method in conjunction with the modified 
RIKS method and the large displacement theory. Geometric 
imperfections are also accounted for the analysis. To take 
into account geometric imperfections in the analysis, an Ei-
genvalue analysis is also utilized to obtain the mode shapes 
of the models under the applied loads. To have a suitable 
amplitude for the geometric imperfections, a scaling factor 
of Lb/1000 was adopted. Then, the scaled buckled mode 
shape was added as an initial imperfection patter to the 
original geometry throughout the beam length. 

3. FINITE ELEMENT MODEL VALIDATION 

The validity of the modeling technique is verified in this 
part by numerical modeling of specimens tested by Kwon 
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and Seo [4]. Kwon and Seo [4] performed some flexural 
tests on a series of welded H-sections fabricated from steel 
plates of thickness 6.0 mm. In the test program, two concen-
trated (knife-edge) loads were applied at approximately one-
third points of top flange in vertical direction as shown in 
(Fig. 1). The full geometry of the setup including flanges, 
webs and stiffeners was modeled.  

 

 

Fig. (1). Loading scheme of slender specimens tested by Kwon and 

Seo [4]. 

 
Among the tested specimens, specimens H350-600, 

H400-600 and H400-400 were modeled and analyzed using 
the developed FEM model in Sec. 2. The yield stress of the 
material was taken as 413.0MPa. Young’s modulus and 
Poisson’s ratio of 200 GPa and 0.3 were assumed. The criti-
cal buckling moment capacities of the specimens obtained 
from the experiments and the FE analysis are compared in 
(Table 1). As it is seen, there is a satisfactory accordance 
between the test buckling moments and the moments deter-
mined using the FEM. Numerically obtained failure mode of 
specimen H350-600 has been shown in (Fig. 2) which is in 
good agreement with the failure mode observed in the test.  

4. PARAMETRIC STUDY  

 In this section using the validated FE model, a nonlinear 
buckling analysis is conducted to investigate the effects of 
FLB phenomenon on the LTB moment resistance of built-up 

I-beams under nonuniform bending (concentrated loading at 
midspan). To this end, a wide range of flange slendernesses 
was selected to investigate the abovementioed aim for both 
elastic and inelastic beams. All of the sections are considered 
to have compact webs. Therefore, the web height and thick-
ness were kept equal to 300 mm and 10 mm respectively for 
all sections (i.e. compact webs) except just for one section. 
To perform a parametric study, 10 cross sections with differ-
ent flange slendernesses were considered as shown in  
(Table 2). For convenience, these models were assigned a 
specific symbol as Sm-n where m and n stand for the flange 
total width and thickness in mm, respectively. The web 
height and thickness of model S400-6 are equal to 400 mm 
and 10 mm, respectively.  

 In order to investigate the global LTB of locally buckled 
sections in different behavioral regions, the cross sections 
were analyzed with different span lengths (46 models). The 
interactive buckling moment resistances of the FEM models 
(Mn(FEM)) are given in (Table 2) along with the buckling 
moments determined by the AISC-LRFD provisions. As it 
was pointed out earlier, the AISC-LRFD moment resistance 
(Mn(AISC)) is estimated as the minimum of the LTB and FLB 
moment capacities In fact, the LTB and FLB limit states are 
treated as two independent phenomena. The original AIS-
LRFD flange local buckling and lateral-torsional buckling 
moment capacities have been derived taking into account the 
effects of residual stresses. However, bacause of considering 
no residual stresses in the above finite element analyses; the 
AISC-LRFD FLB and LTB resistance formulas were com-
puted with zero residual stresses to be compared with the 
corresponding FEM results. Furthermore, the dimensionless 
moment capacities of the cross sections calculated based on 
the DSM design formula proposed by Kwon and Seo [4] are 
given in (Table 2) to be compared with the FEM and AISC 
results.  

Table 1.  Comparison of Slender Beam Tests Results from Kwon and Seo [4] to the FEM Results 

Specimen L(mm) t(mm) MTEST (kNm) MFEM (kNm) Failure Mode Difference % 

H350-600 10000 6 483.9 485.03 FLB 0.2 

H400-600 10000 6 494.2 483.14 FLB 2.2 

H400-400 10000 6 328.3 335.7 FLB 2.2 

 

 

        (a)                                                   (b) 

Fig. (2). Deformed shape of specimen H350-600 by: (a) FEM and (b) test (Kwon and Seo 2012). 
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Table 2.  The AISC-LRFD and FEM Moment Capacities of the Studied Sections Under Nonuniform Bending 

AISC-LRFD 

Section 
Section 

class 

Mp 

(kN-m) 

Lb 

(m) Mn(FLB) 

(kN-m) 

Mn(LTB) 

(kN-m) 

Mn(AISC) 

(kN-m) 

Mn(FEM) 

(kN-m)  

 

 

3.10 260.3 198.6 192.5 1.03 1.14 0.76 

3.97 251.8 198.6 191.8 1.03 1.13 0.77 

4.84 243.3 198.6 186.3 1.07 1.11 0.78 

5.70 235.2 198.6 183.7 1.08 1.1 0.79 

S200-10 Comp. 198.6 

6.57 

198.6 

190.5 190.5 179.1 1.06 1.00 0.86 

3.00 219.8 166.7 164.2 1.01 1.15 0.76 

3.85 211.4 166.7 160.8 1.04 1.13 0.77 

4.71 203.0 166.7 154.9 1.08 1.10 0.78 

5.57 189.7 166.7 153.9 1.08 1.07 0.80 

S200-8 Noncomp. 168.7 

6.43 

166.7 

152.5 152.5 147.4 1.03 0.96 0.88 

2.86 180 130.7 136.5 0.96 1.17 0.74 

3.67 172.4 130.7 131.2 1.00 1.15 0.76 

4.50 164.6 130.7 127.8 1.02 1.12 0.77 

5.35 151.7 130.7 123.9 1.05 1.08 0.80 

S200-6 Noncomp. 139.2 

6.19 

130.7 

121.4 121.4 117.6 1.03 0.96 0.88 

4.92 357.5 263.9 268.2 0.98 1.16 0.75 

6.21 347.9 263.9 264.1 1.00 1.15 0.76 

7.50 338.3 263.9 261.5 1.01 1.13 0.77 

8.79 325.9 263.9 256.3 1.03 1.11 0.78 

S300-10 Noncomp. 271.4 

10.08 

263.9 

265.1 263.9 253.5 1.04 1.00 0.85 

4.77 296.9 213 221.5 0.96 1.18 0.74 

6.06 287.3 213 219.9 0.97 1.16 0.75 

7.34 277.7 213 214.3 1.00 1.14 0.76 

8.63 257.8 213 209.7 1.02 1.10 0.78 

S300-8 Noncomp. 226.6 

9.92 

213 

207.5 207.5 207.2 1.00 0.99 0.86 

4.56 237.5 143.9 173.8 0.83 1.28 0.69 

5.84 228.3 143.9 173 0.83 1.26 0.70 

7.12 219 143.9 168.1 0.86 1.23 0.71 

8.4 198.9 143.9 167 0.86 1.17 0.74 

S300-6 Slender 182.3 

9.7 

143.9 

158.4 143.9 162.3 0.89 1.05 0.82 

5.83 406.2 294.6 303.8 0.97 1.17 0.74 

7.34 396.0 294.6 300.9 0.98 1.16 0.75 

10.33 371.8 294.6 295 1.0 1.12 0.77 

S350-10 Noncomp. 307.8 

11.83 

294.6 

302.7 294.6 291.2 1.01 1.01 0.84 
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(Table 2) contd…. 

AISC-LRFD 

Section 
Section 

class 

Mp 

(kN-m) 

Lb 

(m) Mn(FLB) 

(kN-m) 

Mn(LTB) 

(kN-m) 

Mn(AISC) 

(kN-m) 

Mn(FEM) 

(kN-m)  

 

 

5.68 335.5 234.5 248.8 0.94 1.20 0.73 

7.18 325.3 234.5 249.2 0.94 1.18 0.74 

10.17 291.7 234.5 241.2 0.97 1.11 0.78 

S350-8 Noncomp. 255.5 

11.6 

234.5 

237.1 234.5 238.1 0.98 1.00 0.85 

5.45 266.1 119.4 184.5 0.65 1.49 0.60 

6.94 256.2 119.4 182.5 0.65 1.46 0.61 

9.93 222.7 119.4 181.3 0.66 1.36 0.65 
S350-6 Slender 203.9 

11.42 

119.4 

178.0 119.4 185.1 0.64 1.22 0.72 

6 421.8 124.9 290.3 0.43 1.84 0.50 

8.12 403.1 124.9 280.3 0.44 1.80 0.51 

11.8 288.2 124.9 267.8 0.47 1.52 0.59 
S400-6 Slender 323 

13.7 

124.9 

224.2 124.9 264.8 0.47 1.34 0.66 

 
5. DISCUSSION OF THE RESULTS 

As it is seen in Table 2, for most of the cases with com-

pact and noncompact sections, the moment capacities given 

by AISC-LRFD are approximately equal to the values pre-

dicted by the FEM. This indicates that the AISC approach to 

determine the moment capacity of locally buckled unbraced 

beams is adequate for design purposes and hence, the LTB 

and FLB limit states can be considered as two independent 

phenomena with no interaction for beams with compact or 

noncompact sections. The AISC-LRFD flange local buck-

ling, lateral-torsional buckling and the FEM moment capaci-

ties for the noncompact section S200-6 with different span-

lengths are shown in (Fig. 3). It is seen that the FEM mo-

ment capacity of the beam can be estimated by the simple 

AISC approach with a maximum error of 5%. 

 

 

Fig. (3). The AISC-LRFD FLB, LTB and FEM moment capacities 

for the noncompact section S200-6. 

The AISC-LRFD FLB, LTB and FEM moment capacity 
predictions for the slender section S350-6 are illustrated in 
(Fig. 4). In this case, contrary to the section S200-6, it can be 
seen that the AISC approach is too conservative for beams 
with slender flanges (underestimation up to 57% for section 
S400-6) due to ignoring the interaction between the FLB and 
LTB phenomena. Also, it can be seen that the FEM buckling 
moment capacity of the slender section does not depend on 
the unbraced length of the beams indicating the FLB mode 
as the governing failure mode. However, despite the identi-
cal governing failure modes predicted by both the FEM and 
AISC approaches, there is no agreement between their esti-
mated moment capacities. The discrepancy between the 
FEM and AISC predictions for the slender sections can be 
due to the post-local-buckling reserve strength of compres-
sion flanges. This post-local-buckling resistance may be due 
to the redistribution of the flange bending compressive 
stresses over the flange effective width which has not been 
taken into account in the AISC FLB moment capacity for-
mula (i.e. Eq. 5) derivation. 

In order to compare the results of this study with the find-
ings of the other researchers, the moment capacity of the 
sections was also estimated by the DSM design formula 
given by Kwon and Seo [4] as shown in Table 2. Variation 
of estimated moment capacities of the sections by the AISC, 
FEM and Kwon’s approaches is illustrated against the di-
mensionless slenderness parameter  in (Fig. 5). It can be 
observed that as the ratio Mn (LTB)/Mn(FLB) becomes 
larger than unity (i.e. the distance between the global and 
local buckling capacities becomes larger, >1.2), the AISC-
LRFD buckling moment prediction is too conservative for 
slender beams with slender sections. However, the DSM 
design formula proposed by Kwon due to considering the 
FLB and LTB interaction presents an accurate estimation of 
locally buckled sections as a lower-bound to the FEM 
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Fig. (4). The AISC-LRFD FLB, LTB and FEM moment capacities 
for the sections S350-6.  

 

Fig. (5). Variations of the normalized moment capacity predictions 
for the studied beams.  

 
results. This shows the capability of Kwon’s formula for 
flexural capacity of steel beams with slender sections under 
nonuniform bending. 

6. CONCLUSIONS 

 This study deals with the inelastic LTB strength of dif-
ferent built-up steel beams (i.e. with compact, noncompact 
and slender sections) under moment gradient (i.e. concen-
trated load at shear center) using FEM. To this end, the in-
teractive buckling resistance of elastic and inelastic steel I-
beams undergoing simultaneous LTB and FLB phenomena 
was taken into account. It was found that, the AISC-LRFD 
approach is applicable to steel beams with compact and non-
compact sections indicating no interaction between the local 
and global buckling phenomena. However, the AISC ap-
proach is too conservative for beams with slender flanges 
due to ignoring the interaction between the FLB and LTB 
phenomena. The discrepancy between the FEM and AISC 
predictions for the slender sections is due to the post-local-
buckling reserve strength of compression flanges which has 
not been considered in the AISC-LRFD flange local buck-
ling moment capacity formula Furthermore, it was shown 
that the DSM design formula due to considering the FLB and 
LTB interaction and post-local-buckling of compression 
flanges, provides an accurate estimation of locally buckled 
sections’ capacity under moment gradient as a lower-bound 
to the FEM. However, since the number of beams investi-
gated in this study is limited, the results are not conclusive. 
Therefore, more numerical and experimental investigations 
should be conducted to prove the results.  
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NOMENCLATURE 

Cw = Warping section constant 

E = Young's modulus of elasticity 

Fr = Residual stress of beams equal to 0.3Fy 

Fy = Yield stress of steel 

G = Shear modulus of elasticity 

Iy = Second moment of area about y-axis 

J = Torsional section constant 

Lb = Unbraced length of the beam 

Lr = Limiting unbraced length to achieve the onset 
of yielding in pure bending 

Lp = Limiting unbraced length to achieve the plastic 
moment in pure bending 

Mp = Section plastic moment capacity 

Mn(FLB) = Flange local buckling moment capacity 

Mn(LTB) = Lateral-torsional buckling moment capacity 

Mn(AISC) = Minimum value of Mn(FLB) and Mn(LTB) 

Sx = Elastic section modulus 

Z = Plastic section modulus 

f = Slenderness parameter for flange 

pf  = Limiting slenderness parameter for compact 

flange 

rf = Limiting slenderness parameter for noncompact 

flange 
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