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Abstract: In this work fragility analysis of reinforced concrete and steel structures withinfill walls is performed.For this 

purpose a fuzzy-based fragility assessment framework for evaluating 3D framed structures is proposed taking into account 

various sources of uncertainty. In particular, randomness on the material properties and on the seismic demand is consid-

ered. The proposed framework requires the development of a fuzzy nonlinear static analysis model in order to define the 

limit states. The fragility curves are expressed in the form of a two-parameter lognormal distribution. 
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1. INTRODUCTION 

Seismic fragility analysis provides a measure of the 

safety margin for the structural system, sincefragilities repre-

sent the probabilities of exceedance of limit-states as func-

tions of earthquake ground motion intensity. Therefore, fra-

gility analysisis considered as the main ingredient of the risk 

assessment procedure.In the past a number of studies on fra-

gility analysis of structural systems have been published[1-

5]. Real-world structures are characterized by imperfections 

while the material properties and the loading conditions are 

uncertain, which induce deviations from the nominal state 

assumed by the design codes. A deterministic representation 

of a design that ignores scatter of any kind of the parameters 

affecting its response is never materialized in an absolute 

way, due to unavoidable scattering of the values of its 

parameters. So far a number of researchers studied the effect 

of uncertainties in the context of fragility analysis; mainly in 

steel and RC structures [6-10]. 

Modelling uncertainty in engineeringproblems as random 

variables or random processes becomes problematic when 

uncertain data have additional uncertainty besides the prop-

erty of randomness. Fuzzy randomness is a generalized un-

certainty model to describe samples with uncertainty of the 

single sample element. The basic terms and definitions re-

lated to fuzzy randomness can be found in [11-13]. Recently, 

non-probabilistic approaches for numerical engineering 

problems with uncertain variables have been proposed 

[14,15], such as convex models, fuzzy sets, random sets, 

possibility the oryand others. The main motivation for adopt-

ing nonprobabilistic approaches is the high sensitivity offail-

ure reliability to the tails of probability distributionsof the 

random variables involved in the analysis [16]. Publications 

implementing fuzzy numbers in fragility analysis are limited 
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in particular, Huo and Hwang [17] presented an approach for 

seismic fragility analysis including fuzzy damage states 

where four fuzzy damage states were defined and their 

membership functions were established based on the avail-

able experimental data. Gu and Lu [18] presented a fuzzy-

random model for the performance reliability analysis of RC 

framed structures considering both structural and non struc-

tural-damages. The limit state for each performance level 

was defined as an interval of inter-storey drift ratiosconcern-

ing, respectively, the non-structural and structural damage 

with a membership function, while there lative importance of 

the two aspects was reflected through the use of an appropri-

ate cost function. 

In the present paper, a fragility analysis procedure for re-

inforced concrete (RC) and steel structures is establishedin 

the framework of fuzzy number theory, where uncertainties 

on the material properties and the seismic loads follow the 

proposal presented in the work by Elishak off and Ferracuti 

[19] and they are definedthrough membership functions. 

Two performance limits (mathematically defined through-

failure boundaries) are defined for the structures. After per-

forming operations between fuzzy numbers, membership 

function of the response characterized with the maximum 

interstorey drift is obtained. Two 3D structures are consid-

ered while randomness on seismic demandand the material 

properties are taken into account. 

2. FRAGILITY ANALYSIS 

Earthquake risk assessment of building structures re-

quires the calculation of limit-state probabilities for a series 

of limit-states. The target is to obtain the limit-state prob-

abilities of exceedance that serve as a hazard curve for struc-

tural damage. The mean annual frequency of maximum in-

terstorey drift max exceeding a value y is obtained as: 

        (1) 

where >y is the rate of max exceeding the value y and (x) 

is the hazard curve representing the mean annual frequency 
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of the chosen intensity measure exceeding x. The absolute 

value is used for the slope because it has a negative value. 

According to equation (1) the seismic fragility FR is de-

fined as the limit-state probability, conditioned on a measure 

of seismic intensity IM, which may be expressed as peak 

ground acceleration, spectral acceleration, spectral velocity, 

or any other control variable that is consistent with the speci-

fication of seismic hazard. In this work the first mode spec-

tral acceleration SA(T1,5%) is used to represent the intensity 

of the seismic ground motion. Thus the seismic fragility 

curves are defined as: 

              (2) 

According to Shinozuka et al. [6]it is assumed that the 

curves FR can be expressed in the form of lognormal distri-

bution function. Building fragility curves are lognormal 

functions that describe the probability of reaching or exceed-

ing a specific limit state. The conditional probability of being 

in, or exceeding, a particular damage state y given a peak 

ground acceleration, PGA, (or other seismic demand parame-

ter) is defined by: 

            (3) 

where μPGA,y is the median value of peak ground accelera-

tion at which the building reaches the threshold of damage 

state, y, y is the standard deviation of the natural logarithm 

of peak ground acceleration for the damage state y and  is 

the standard normal cumulative distribution function. 

3. MODELLING AND FINITE ELEMENT ANALYSIS 

Nonlinear static or dynamic analysis needs a detailed 

simulation of the structure in the regions where inelastic de-

formations are expected to develop. In order to consider the 

inelastic behaviour either the plastic-hinge or the fibre ap-

proach can be adopted. For some researchers the plastic 

hinge approach has limitations in terms of accuracy and 

thereforefibre beam-column elements are preferred [20]. 

According to the fibre approach, each structural element is 

discretized into a number of integration sections restrained to 

the beam kinematics, and each section is divided into a num-

ber of fibres (Fig. 1) with specific material properties (Afib, 

Efib). Everyfibre in the section can be assigned to different 

material properties, e.g. concrete, structural steel, or reinforc-

ing bar material properties, whilethe sections are located at 

the Gaussian integration points of the elements.The main 

advantage of the fibre approach is that every fibre has a sim-

ple uniaxial material model allowing an easy and efficient 

implementation of the inelastic behaviour.In the numerical 

test examples section that follows, all analyses have been 

performed using the OpenSEES [21] platform. A bilinear 

material model with pure kinematic hardening is adopted for 

the structural steel, while geometric nonlinearity is explicitly 

taken into consideration. For the simulation of the concrete 

the modified Kent-Park model, where the monotonic enve-

lope of concrete in compression follows the model of Kent 

and Park [22] as extended by Scott et al. in [23], is em-

ployed. This model was chosen because it allows for an ac-

curate prediction of the demand for flexure-dominated RC 

members despite its relatively simple formulation. The tran-

sient behaviour of the reinforcing bars was simulated with 

the Menegotto-Pinto model [24]. 

In the work by Calvi et al. [25] a detailed parametric 

study is performed with respect to the parameters that affect 

the modelling of the infill walls while a detailed state-of-the-

art review on modelling approaches can be found in [26]. In 

this work the masonry infill walls are modelled by replacing 

their structural behaviour with a system of two equivalent 

diagonal compression struts [27, 28]. Figs. (2) and (3) depict 

the model and the strength envelope for masonry infill walls. 

The user defined parameters of the strength envelope model, 

described in Fig. (3), are the cracking shear Vy, the maximum 

strength Vm and the post-peak residual shear strength Vp to-

gether with the corresponding lateral displacement values, 

uy, um and up. The coefficient , is the ratio of stiffness after 

yielding to the initial stiffness. In order to define the parame-

ters of the envelope curve, the maximum strength Vm is first 

estimated considering the two critical failure modes, i.e. slid-

ing shear and compression failures [28], while the remaining 

of the parameters are defined through the following expres-

sions. The maximum strength is calculated based the formula 

given in the work by Dol ekand Fajfar [29]: 

( )2
0.818 1 1 ,   1.925

in w tp in
m I I

I in

l t f l
V C C

C h
= + + =

                
(4)

 

where ftp is the cracking strength of the infill (taken equal to 

0.38 MPa [30]), tw is the infill wall thickness, lin and hin are 

Y

Z

X

Afib,Efib

 

Fig. (1). Modelling of the inelastic behaviour with the fibre approach. 
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the length and the height of the infill. The maximum dis-

placement um, corresponding to the maximum lateral force, is 

estimated according to Madan et al. [28] as follows: 

'

cos

m in

m

d
u =

                  
(5)

 

where 
'

m
 is the maximum masonry compression strain 

taken equal to 0.0015 [27], din is the diagonal strut length 

while  is the inclination of the diagonal strut with respect to 

the horizontal axis. The initial stiffness Ke can be estimated 

by: 

2( / )
e m m

K V u=
                 (6) 

The lateral yielding force Vy, and the corresponding dis-

placement uy are calculated from the envelope geometry: 

1

m e m

y

V K u
V =

                 (7) 

y

y

e

V
u

K
=

               (8) 

The coefficient  is assumed to be equal to 0.2, while the 

post-peak residual shear strength Vp is considered as a func-

tion of the cracking shear [31]: 

1

3p y
V V=

                   (9) 

The corresponding displacement value up is calculated 

based on the assumption that the stiffness of the softening 

Ksof branch is taken equal to 10% of the initial stiffness [25]. 

4. MODELLING OF FUZZY PARAMETERS 

It is common in earthquake risk analysis to distinguish 

between uncertainty that reflects the variability of the out-

come of a repeatable experiment and uncertainty due to igno-

rance. The first type of uncertainty is sometimes referred as 

“randomness”, commonly known as “aleatory uncertainty”, 

 

Fig. (2). The equivalent diagonal struts. 

 

Fig. (3). Strength envelope for conventional masonry infill walls. 
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which cannot be reduced. However, both deterministic and 

probabilistic approaches are built on a number of model as-

sumptions and model parameters that are based on what is 

currently known about the physics of the relevant processes 

and the behaviour of systems under given conditions. There 

is uncertainty associated with these conditions, which de-

pends upon the state of knowledge that is referred as “epis-

temic uncertainty”. 

4.1. Uncertain Parameters 

In this study various sources of uncertainty are consid-

ered: on the ground motion excitation (aleatory randomness) 

which influences the level of seismic demand and on the 

modelling (epistemic uncertainty) which affects the struc-

tural capacity. The structural stiffness is directly connected 

to the modulus of elasticity Es and Ec of the steel and con-

crete respectively, while the strength is influenced by the 

yield stress fy of the steel and the cylindrical strength for the 

concrete fc and the hardening b of the steel, while for the 

infill walls the cracking strength of the infill ftpandthe maxi-

mum masonry compression strain
'

m
are also considered as 

uncertain parameters. Thus, for the structural elements (col-

umns and beams) three random variables are considered for 

the steel structure and two for the RCstructure; the modulus 

of elasticity (Es and Ec), the yield and cylindrical strength 

stresses (fy and fc) and the hardening parameter b of the 

stress-strain curve and two for the diagonal compression 

struts (ftpand
'

m
). 

The most common approach for the definition of the 

seismic input is the use of design code response spectrum. 

This is a general approach, which is easy to implement. 

However if higher precision is required the use of spectra 

derived from natural earthquake records is more appropriate. 

Since significant dispersion on the structural response due to 

the use of different natural records has been observed, these 

spectra must be scaled to the same desired earthquake inten-

sity. The most commonly applied scaling procedure is based 

on the peak ground acceleration (PGA). In this study a set of 

nineteen natural accelerograms, shown in Table 1, is used. 

Each record corresponds to different earthquake magnitudes 

and soil properties. These time histories are from different 

earthquakes. Two are from the 1992 Cape Mendocino earth-

quake, two are from the 1978 Tabas, Iran earthquake and 

fifteen are from the 1999 Chi-Chi, Taiwan earthquake. The 

Table 1. List of the Natural Records 

Earthquake Station Distance Site 

Dayhook 14 rock Tabas 

16 Sept. 1978 Tabas 1.1 rock 

Cape 

Mendocino 
6.9 rock Cape Mendocino 

25 April 1992 
Petrolia 8.1 soil 

TCU052 1.4 soil 

TCU065 5.0 soil 

TCU067 2.4 soil 

TCU068 0.2 soil 

TCU071 2.9 soil 

TCU072 5.9 soil 

TCU074 12.2 soil 

TCU075 5.6 soil 

TCU076 5.1 soil 

TCU078 6.9 soil 

TCU079 9.3 soil 

TCU089 7.0 rock 

TCU101 4.9 soil 

TCU102 3.8 soil 

Chi-Chi 

20 Sept. 1999 

TCU129 3.9 soil 
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records are scaled, to the same peak ground acceleration of 

0.31g in order to ensure compatibility between them. The 

response spectra for each scaled record, in x and y directions, 

are shown in Figs. (4) and (5), respectively. It has been ob-

served that the response spectra follow the lognormal distri-

bution [32]. Therefore the median spectrum x̂ , also shown 

in Figs. (4) and (5), and the standard deviation  are calcu-

lated from the above set of spectra using the following 

expressions:  

n

d,ii 1
ln(R (T))

x̂ exp
n

==

            (10) 

( )
1 2

2n

d,ii 1
ˆln(R (T)) ln(x)

n 1

==

          (11) 

where Rd,i(T) is the response spectrum value for period equal 

to T of the i
th

 record (i=1,…,n, where n=19 in this study). 

4.2. Fuzzification of Uncertain Parameters 

Fuzzification is understood to be the specification of the 

membership function μ(x) of an uncertain set andthe result of 

fuzzification is the fuzzy valuex. We assume that the nu-

merical properties (the modulus of elasticity Es and Ec of the 

steel and concrete respectively, the yield stress fy of the steel, 

the cylindrical strength for the concrete fc, the hardening b of 

the steel, thecracking strength of the infillandits maximum 

masonry compression strain)and the acceleration Rdare un-

certain and they are defined by means of triangular fuzzy 

variables. Since material properties and accelerationare un-

certain parameters (fuzzy variables), maximum interstorey 

drift max is also a fuzzy variable. As an example, the mem-

bership function of max is depicted in Fig. (6). It is obtained 
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Fig. (4). Natural record response spectra and their median – longitudinal direction. 
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Fig. (5). Natural record response spectra and their median – transverse direction. 
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assuming triangular fuzzy numbers
min mean max= [ , , ]x x x x  for 

the fuzzy numbers: the first and the third numbers represent 

the lower and upperbounds of support, and the middle num-

ber is thevalue whose membership function is equal to unity 

corresponding to the mean value of the uncertain parame-

ter.The characteristics of the random variables based on the 

work by [33, 34] are provided in Table 2, where the mean 

value of the concrete compressive strength is 12% higher 

than its nominal value, the mean value of the yield stress for 

the steel reinforcement is 5% higher than its nominal value 

and that of the structural steel is 17% higher than its nominal 

value. The minimum and maximum values of the fuzzy 

numbers are defined by subtracting and adding the standard 

deviations to the mean value, therefore for the seismic de-

mand, for a given period value, the acceleration Rd is also 

obtained as a fuzzy number 
  
%R

d
= [x̂ - , x̂, x̂ + ]  whose 

mean value is equal to x̂  and standard deviation is equal to 

. 

4.3. -level Optimization 

Uncertain parameters are considered to be fuzzy numbers 

described with membership functions. Fig. (6) shows three 

fuzzy parameters, two inputs (Ec and fc) and one output ( ) 

parameter, represented as triangular fuzzy numbers with 

support values of A0, B0 and C0, respectively. The fuzzy set 

that contains all elements with a membership of [0,1] and 

above is called the -cut of the membership function. At -

level it will have support of A  defined by 
c,min c,max[E ,E ] , B  

defined by 
c,min c,max[f , f ]and C  defined by 

 
[

min
,

max
] . Ac-

cording to this method,the membership function is cut hori-

zontally at a finite number of -levels between 0 and 1. For 

each -level of the parameter, the model is run to determine 

the minimum and maximum possible values of the output. 

This is achieved solving the following optimization prob-

lems for each level: 

1 n 1 nz f (x , , x ) Max (x , , x )= XK K
       (12a) 

1 n 1 nz f (x , , x ) Min (x , , x )= XK K
       (12b) 

where all fuzzy input values are cut horizontally using the 

same of -level. For each fuzzy input value xi on the level  

the -level set Ai,a is then defined and all -level sets form the 

subspace Xa. With the aid of the mapping operator 

Table 2. Basic Fuzzy Variables 

Fuzzy Variable Mean value COV (%) 

Ec 20 GPa 13.0 

fc 16 MPa 13.0 

Es 210 GPa 11.0 

fy 500 MPa 11.0 

Concrete 

hardening 1.0 % 11.0 

Es 200 GPa 17.0 

fy 235 MPa 17.0 Steel 

hardening 1.0 % 17.0 

ftp 0.38 MPa 20.0 
Infills 

'

m
 0.0015 20.0 

Seismic demand x̂  
 x̂

 

Fig. (6). -cut procedure for defining the membership function of the response. 
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z=f(x1,…,xn) it is possible to compute elements of the -

levels sets Ba of the fuzzy output values. This information is 

then directly used to construct the corresponding fuzziness 

(membership function) of the output ( in Fig. 6) which is 

used as a measure of uncertainty.Once the largest elemen-

tand the smallest element min max[z , z ]  of the -levels sets Ba 

have been found then two points of the membership function 

μ(z) are known (Fig. 6). If the output is monotonic with re-

spect to the dependent fuzzy variables, the process is rather 

simple since only two simulations will be enough for each -

level (one for each boundary). Otherwise, optimization rou-

tines have to be carried out to determine the minimum and 

maximum values of the output for each -level. In this study 

an evolutionary based optimization algorithm was imple-

mented which was found to be very efficient in a number of 

studies [35,36]. 

5. FUZZY CAPACITY SPECTRUM METHOD 

The capacity spectrum method (CSM) was initially pro-

posed by Freeman [37]. The method compares the capacity 

of a structure to resist lateral forces to the demand given by a 

response spectrum in a graphical manner. Theresponse spec-

trum represents the demand while the pushover curve (or the 

“capacity curve”) represents the available capacity. Both 

curves are converted and plotted against an acceleration-

displacement graph (AD graph) making easy the evaluation 

of the point of equal demand and supply, also known as per-

formance point. In this work a fuzzy capacity spectrum 

method (FCSM) is proposed. Since the material properties 

are fuzzy numbers multiple fuzzy capacity curves are ob-

tained, while considering the response spectrumacceleration 

Rd as a fuzzy number, multiplefuzzy response spectra are 

defined (see Fig. 7).Similar to the deterministic CSM in 

FCSM both groups of curves are converted and plotted 

against acceleration-displacement graphs(AD graphs) lead-

ing to multiple performance points which are also fuzzy 

numbers by combining each fuzzy capacity curve with one 

fuzzy representation of the response spectrum. The steps of 

the method are briefly summarized as follows: 

S D

Fig. (7). Fuzzy capacity spectrum method. 

 
(a) 

 
(b) 

Fig. (8). RC structure-geometry of the two storey concrete structure (a) plan view and (b) side view  
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a) Perform pushover analysis and determine the capacity or 

pushover curve in base shear versus roof displacement 

(Vb-D) for various combinations of the fuzzy material 

properties. 

b) Convert the pushover curves of the MDOFsystem to the 

capacity diagrams of equivalent SDOFsystemsusing the 

first mode participation factor . Then approximate the 

capacity curves with an idealized elasto-perfectly plastic 

relationship. 

c) Convert the idealized fuzzy capacity curves from Vb-D to 

AD terms. Plot the fuzzy capacity curves on the same 

graphs with the 5%-damped fuzzy elastic response spec-

tra that are also in AD format. For each combination of 

the fuzzy material properties (of step i) a fuzzy realiza-

tion of the elastic response spectrum is generated. 

d) Estimate the peak deformation demandsD and determine 

the corresponding pseudo-accelerationsA from the fuzzy 

capacity diagrams. Initially, assume D=D(Te, =5%), de-

termined for period Te from the elastic demand diagram. 

e) Compute ductility μ=D/uy and calculate the hysteretic 

damping h as h=2(μ-1)/ μ. The equivalent damping ra-

tiosare evaluated from a relationship of the form for each 

combination of fuzzy capacity curve-fuzzy response 

spectrum: 

æ =æ +êæeq el h                 (13) 

(b) 

 

(c)  

Fig. (9). RC structure-membership functions of the maximum interstorey drift for the (a) 50/50, (b) 10/50 and (c) 2/50 hazard levels  
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where  is a damping modification factor that depends on 

thehysteretic behavior of the system. 

a) Plot the elastic demand diagram for eq and read of the 

displacement D, where this curve intersects the capacity 

diagram. 

b) Check for convergence the displacement D. If the change 

in Dis sufficiently small the target displacement for the 

SDOF system is *

t
d D=  and the corresponding displace-

ment of the MDOF system is equal to *

t t
d Ãd= . Oth-

erwise go back to step i. 

6. NUMERICAL RESULTS 

Two test examples are considered for performing the pa-

rametric study described in this work. In particular one rein-
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Fig. (10). RC structure-fuzzy fragility curves for the slight and moderate damage states. 
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forced concrete and one steel three dimensional framed 

structures are employed.For both test examples the lateral 

forces imposed by the EC8 [38] were derived from the de-

sign response spectrum (5%-damped elastic spectrum di-

vided by the behaviour factor q=3.0 for the reinforced con-

crete and q=4.0 for the steel test examples, respectively) at 

the fundamental period of the structure. The base shear is 

obtained from the response spectrum for soil type B (stiff 

soil  = 1.0, with characteristic periods 1 = 0.15sec and 2 = 

0.60sec) and a PGA of 0.31 g. Moreover, the importance 

factor I was taken equal to 1.0, while damping correction 

factor is equal to 1.0, since a damping ratio of 5% has been 

considered. 

6.1. Concrete Test Example 

The two storey RC structure, shown in Fig. (8), has been 

considered in order to develop the fuzzy fragility curves. In 

the framework of this study, the RC building has been de-

signed to meet the Eurocode (EC2 [39] and EC8 [38]) re-

quirements. Concrete of class C16/20 (nominal cylindrical 

strength of 16MPawith modulus of elasticity equal to 30 

GPa) and class B500steel (nominal yield stress of 

500MPawith modulus of elasticity equal to 210 GPa) are 

assumed. Compared to the confined concrete the cylindrical 

strength of the unconfined concrete is reduced by 20%. The 

slab thickness is equal to 18 cm and is considered to contrib-

ute to the moment of inertia of the beams with an effective 

flange width. In addition to the self-weight of the beams and 

the slab, a distributed dead load of 2 kN/m
2
, due to floor fin-

ishing and partitions and imposed live load with nominal 

value of 1.5 kN/m
2
, is considered, in the combination with 

gravity loads (“persistent design situation”). Nominal dead 

and live loads are multiplied by load factors of 1.35 and 1.5, 

respectively. Following EC8, in the seismic design combina-

tion, dead loads are considered with their nominal value, 

while live loads with 30% of their nominal value. Moreover, 

the strong-column weak-beam guideline was followed in the 

design process. The dimension of all the columns is 60 60 

cm
2
 with 16Ø20 longitudinal reinforcement while the beams 

are 30 60 cm
2
 with 8Ø18 longitudinal reinforcement. 

In the first part of this study the fuzzy nonlinear static 

analysis of this building is considered where the fuzzy re-

sponse in terms of maximum interstorey drift in three hazard 

levels is defined. For this purpose the FCSM is implemented 

and the fuzziness of the maximum interstorey drift is de-

finedusing both the minimum and maximum values of the 

fuzzy parameters (material properties and seismic demand) 

and solving the optimization problems described in Eqs. 

(12a) and (12b)considering 10 a-levels. The resultsarepre-

sented in Figs. (9a) to (9c) where Comb_min and Comb_max 

represent the membership function of themaximum intersto-

rey drift implementing theminimum and maximum values of 

Table 3. Mean, Mix and MIN Probabilities of Exceedance 

Probability of exceeding the limit state (%) 
Limit state 

Mean  Min  Max 

Slight 15.80 12.10 20.40 

Moderate 0.72 0.44 1.18 

   

 
(a) 

 
(b) 

Fig. (12). Steel structure-geometry of the two storey steel structure (a) plan view and (b) side view. 
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the fuzzy parameters (material properties and seismic de-

mand), while Opti_min and Opti_max represent the member-

ship function defined solving the problems described in Eqs. 

(12a) and (12b). As it can be seen the two membership func-

tions are close defining a triangular membership function for 

all three hazard levels. 

In the next step fragility analysis is performedbased on 

FCSM. Fig. (10) depicts the limit state fragility curves for 

(a) 

(b) 

(c) 
Fig. (13). Steel structure-membership functions of the maximum interstorey drift for the (a) 50/50, (b) 10/50 and (c) 2/50 hazard levels. 
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low-rise RC buildings for the high code design level as de-

scribed by the earthquake loss estimation methodology 

(HAZUS) [40] for the slight and moderate structural damage 

states. The damage states, defined with respect to the drift 

limits according to HAZUS for this type of structure, are 

equal to 0.25% and 0.60% for slight and moderate structural 

damage states, respectively. Fig. (10) presents the triangular 

membership functions of the fragilities as defined with the 

minimum, maximum and mean fragility curves for the slight 

and moderate limit states. For the design earthquake 

(PGA=0.31g) theprobability of exceedance of the two limit 

states are considered as fuzzy variables and the membership 

functions are defined implementing theminimum and maxi-

mum values of the fuzzy parameters (material properties and 

seismic demand). These membership functions are shown in 

Figs. (11a) and (11b), while the mean, maximum and mini-

mum values of the probability of exceedance are given in 

Table 3. 

6.2. Steel Test Example 

The two storey 3D steel structure, shown in Fig. (12), has 

been considered in order to perform the fuzzy based fragility 

analysis. In the framework of this study, the steel building 

has been designed to meet the Eurocode (EC3 [41] and EC8 

[38]) requirements. Steel class S235 (nominal yield stress of 

235 MPawith modulus of elasticity equal to 200 GPa) are 

assumed. The slab thickness is equal to 15 cm and is consid-

ered to contribute to the moment of inertia of the beams with 

an effective flange width. In addition to the self-weight of 

the beams and the slab, a distributed dead load of 2 kN/m
2
, 

due to floor finishing and partitions and imposed live load 

with nominal value of 1.5 kN/m
2
, is considered, in the com-

bination with gravity loads (“persistent design situation”). 

Nominal dead and live loads are multiplied by load factors of 

1.35 and 1.5, respectively. Following EC8, in the seismic 

design combination, dead loads are considered with their 

nominal value, while live loads with 30% of their nominal 

value. Moreover, the strong-column weak-beam guideline 

was followed in the design process. The dimension of all the 

columns is: HEB340 for C1, HEB360 for C2 and HEB320 

for C3; while the dimensions of the beams: IPE200 for B4 

and IPE200 for B5. 

In accordance to the first test example in this part the 

fuzzy nonlinear static analysis of this building is considered 

where the fuzzy response in terms of maximum interstorey 

drift in three hazard levels is defined. For this purpose the 

FCSM is implemented and the fuzziness of the maximum 

interstorey drift is defined using both the minimum and 

maximum values of the fuzzy parameters (material proper-

ties and seismic demand) and solving the optimization prob-

lems described in Eqs. (12a) and (12b)considering 10 a-

levels. The resultsarepresented in Figs. (13a) to (c) where 

Comb_min and Comb_max represent the membership func-

tion of themaximum interstorey drift implementing themini-

mum and maximum values of the fuzzy parameters (material 

properties and seismic demand), while Opti_min and 

Opti_max represent the membership function defined solving 

the problems described in Eqs. (12a) and (12b). As it can be 

seen the two membership functions are close defining a tri-

angular membership function for all three hazard levels. 

In the next step fragility analysis is performedbased on 

FCSM. Fig. (14) depicts the limit state fragility curves for 

low-rise steel buildings for the high code design level as de-

scribed by the earthquake loss estimation methodology 

(HAZUS) [40] for the slight and moderate structural damage 

states. The damage states, defined with respect to the drift 

limits according to HAZUS for this type of structure, are 

equal to 0.60% and 1.00% for slight and moderate structural 

damage states, respectively. In Fig. (14) presents the triangu-

lar membership functions of the fragilities as defined with 

the minimum, maximum and mean fragility curves for the 

slight and moderate limit states. For the design earthquake 

(PGA=0.31g) theprobability of exceedance of the two limit 

states are considered as fuzzy variables and the membership 

functions are defined implementing theminimum and maxi-

Fig. (14). Steel structure-fuzzy fragility curves for the slight and moderate damage states. 
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mum values of the fuzzy parameters (material properties and 

seismic demand). These membership functions are shown in 

Figs. (15a) and (b), while the mean, maximum and minimum 

values of the probability of exceedance are given in Table 4. 

7. CONCLUDING REMARKS 

In this work fragility curves associated with different 
limit-states of steel and reinforced concrete structures are 
developed, considering the influence of various sources of 
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Fig. (15). Steel structure-membership functions of the probability of exceedance for the (a) slight and (b) moderate damage states for the 

design earthquake. 

 

Table 4. Mean, Mix and Min Probabilities of Exceedance 

Probability of exceeding the limit state (%) 
Limit state 

Mean  Min  Max 

Slight 71.78 68.68 74.98 

Moderate 41.10 38.41 43.98 
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uncertainty.In particular randomness on the seismic demand 
and on the material propertiesis implemented considering 
fuzzy numbers with triangular membership functions. The 
fragility curves are defined by means of maximum drift val-
ues whileslight and moderate limit states are considered as 
defined for low-rise reinforced concrete and steel buildings 
for the high code design level as described by the earthquake 
loss estimation methodology of HAZUS. For this purpose 
onereinforced concrete and one steel 3D framed structureare 
considered. For the purposes of this study the fuzzy capacity 
spectrum method is proposed in order to define the fuzzy 
membership functions of both performance points and fragil-
ity curves. For the definition of the membership function-
stwo procedures are implemented, using the minimum and 
maximum values of the fuzzy parameters (material proper-
ties and seismic demand) and solving the optimization prob-
lems defined with the -levels. It can be seen that both pro-
cedures provide similar results for the steel test example and 
with slight difference for the reinforced concrete test  
example. 
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