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Abstract: In this work, non-uniform steel members with or without initial geometrical or loading imperfections, that are 

loaded by axial forces applied concentrically or eccentrically and by concentrated moments applied at the ends or at  

intermediate points, are studied. More specifically, steel members with varying cross-sections, tapered or stepped or 

members consisting by two different tapered parts are considered. The formulation presented in this work is based on 

solving the governing equation of the problem through a numerical method where the eigenshapes of the member are  

employed. A failure plasticity criterion is introduced for members especially the short ones that will never reach the  

elastic critical buckling load. Although only the simply supported beam-column case is studied herein, it is obvious that 

the method can be extended to multi-span beams and frames, by employing the corresponding eigenshapes. Useful  

diagrams are presented for both the critical buckling loads and the equilibrium paths showing the influence of the main 

characteristics of the beam-column. 
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INTRODUCTION 

The use of steel members with non-uniform cross-
sections either as columns or as distressed parts of a structure 
with or without bending moments is very common in steel 
constructions. There is a wide variety of structures such as 
buildings frames, bridge members, masts or cranes, etc, 
which are designed with members of non-uniform cross-
sections in order to minimize the required material. The sig-
nificance of using such members in structures and the neces-
sity to study their structural behavior has been realized since 
the beginning of the 19

th
 century by A. Föppl, as it was ref-

erenced by Timoshenko [1]. 

A first approach and study of the above-mentioned prob-
lems of columns with variable cross-sections was made by 
Dinkik in 1914 and in 1916. The main results of these stud-
ies were translated in English by Malets [2, 3]. The same 
problem was studied by Ostwald [4], by Ono [5], by Sted-
man [6] and by Morley [7, 8]. On the history of early studies 
on these topics, one can refer to Timoshenko [9]. 

Bleich [10] studied compression members the cross-
sectional moment of inertia of which was varying by a half-
sine curve. On the other hand, the significance of the initial 
imperfections was noted very early and studied mainly ex-
perimentally by Marston [11], by Jensen [12] and by Lilly 
[13], the studies of which were gathered by Salmon [14]. A 
significant study of compression stepped columns consisting 
by two parts through the use of the Galerkin method has 
been presented by Dimitrof [15]. 

 There is a relatively large number of theoretical or ex-

perimental publications on tapered or stepped columns with 

or without imperfections [16-31]. In the present paper,  

 
 

*Address correspondence to this author at the Civil Engng Dept., National 

Technical University of Athens, 15780 Greece; Tel:  +30-210-7722454; 

Fax: +30-210-7722482; E-mail: rafto@central.ntua.gr  

non-uniform steel members with or without imperfections 
(of any form), loaded by axial forces (concentrically or 
eccentrically applied) and by concentrated moments applied 
at its ends or intermediate points are studied. The steel  
members with cross-section that may vary along the length, 
can be tapered or stepped or they can be members consisting 
by two unequal tapered parts. The imperfections considered 
may have any form. The formulation presented in this paper 
is based on solving the governing equation of the problem 
through the Galerkin method using the eigenshapes of the 
member. A plasticity failure criterion is introduced for stub 
or short members that will never reach the elastic critical 
buckling load. Although in this paper only the simply  
supported single-span beam-column is studied, it is obvious 
that the formulation presented may be extended to any type 
of frame members or frames using the corresponding  
eigenshapes. 

The results are presented in the form of diagrams either 
for the critical buckling loads or for the equilibrium paths, 
showing the influence of the main member’s characteristics, 
as for example the cross-sectional variation law, the interme-
diate loads and bending moments or the existing imperfec-
tions on the above mentioned buckling loads and equilibrium 
paths. 

Although these diagrams are derived for a simply sup-
ported beam-column they can be readily employed for the 
design of steel frames with such members through the use of 
the equivalent buckling length factor concept.  

GOVERNING EQUATIONS 

Let us consider the beam-column shown in Fig. (1), 
where the cross-section varies along the length (x-axis) ac-
cording to a known shape (parabolic, tapered, stepped etc). 
The considered member is loaded by forces and moments as 
shown in Fig. (1). Moreover, the member may have an initial 
imperfection wo(x). 
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In addition, we assume that the member is laterally sup-
ported and hence, it is protected against the possibility of 
buckling about the weak axis. The differential equation for 
buckling of the beam-column is given as follows: 
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where EI is the bending rigidity of the member, w is the de-
flected shape, wo is the initial imperfection, N is the exter-
nally applied axial force, Pi and mi are concentrated forces 
and moments applied at intermediate positions over the 
length, H(x) is the Heaviside unit step function and (x) the 
Dirac delta function. 

The above equation may be written as follows: 
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Non-existence of moments and initial imperfection leads 
to a homogeneous differential equation (without second 
member), which gives the buckling critical loads, while exis-
tence of moments and initial imperfections leads to a com-
plete differential equation, which allows us to study the equi-
librium paths.  

We are searching for a solution in the following form: 
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where )/xnsin()x(X n =  are the eigenshapes of the sim-
ply supported beam and 

n
c  are constants to be determined. 

Introducing eq(3) into eq(2) we obtain: 
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where we have set:  

 
P

j
= N /μ

j
 (4b) 

where μi are the ratios of the loads Pi over N. 

BUCKLING LOADS 

By setting wo= 0 and mi= 0, eq(4a) becomes: 
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Applying the Galerkin procedure in eq(5) and taking into 
account the orthogonality condition we obtain: 
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where: 
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In order that the above linear homogeneous system 
eq(6a) has non-trivial solutions the determinant of the coeffi-
cients of the unknowns c  must be equal to zero. This condi-
tion leads to the following eigenvalue problem expressed by 
the following equation: 

 
A

k k
N = 0 (7) 

Equation (7) gives the spectrum of the critical buckling 
loads Ncr. 

EQUILIBRIUM PATHS 

Equation (4) allows us to determine equilibrium paths. 
Applying once again the Galerkin procedure in eq(4) and 
taking into account the orthogonality condition we obtain: 
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where Ak  and  k  are given in eq(6b), while Bk is given by 
the following equation: 
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Fig. (1). Forces and moments on a beam-column. 
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From the system of equations (8a), we obtain the unknown 

constants 
 
c (N) , ( = 1 to n) and from eq(3) the equilib-

rium paths as follows 
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FAILURE CRITERION  

It is obvious that there are cases (especially for short or 
stub columns), where the member will never reach the elastic 
critical buckling load Ncr. Thus, it is necessary to introduce a 
plasticity criterion, which can be expressed as follows: 
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where z(x) is the distance of the extreme fiber of the mem-
ber’s cross-section at position x, and )x(  is the slenderness 
of the member. 

INITIAL IMPERFECTIONS  

Initial imperfections may appear on a member due to a 
bad stacking during the transportation of steel members and, 
rather rarely, due to constructional causes. In any case, initial 
imperfections have usually a form resembling to a parabolic 
type that can be expressed as follows: 
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where f is the maximum deformation at 2/x = . 

CROSS-SECTIONAL TYPES  

The beam-column cross section may have one of the 
forms shown in Fig. (2). In Fig. (2a), one can see a column 
the cross-section of which changes parabolically. In Fig. (2b) 
a tapered member is shown, while in Fig. (2c) one can see a 
member composed by two tapered parts with different 
length. Finally, in Fig. (2d), one can see a stepped beam-
column.  

In the cases of Fig. (2a,b and c), the cross-section at any 
point x has usually constant flanges (b·tf) but a web with 
variable depth z. 

In all the above cases, the following relation is valid: 
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The Parabolic Beam 

If the web depth z or the moment of inertia I(x) change 
parabolically, it will be (see Fig. 2a and 2e):  
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The Tapered Beam 

For the case of Fig. (2b), and assuming that 1=n , we 
will have: 
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The Beam with Two Tapered Parts 

For the case of Fig. (2c), and assuming that o11 n=  
and 122 n=  we will have: 
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For members consisting of two tapered parts we note that 
the discontinuity at x= 1, affects the results obtained by us-
ing some commercial mathematical manipulators. For the 
case of a beam composed by two parts with lengths 1 and 2, 
and flanges AB and BC (Fig. 2c) that have the same inclina-
tion, the following approaching formula that removes the 
aforementioned discontinuity is suggested: 
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The Stepped Beam-Column 

In this case (Fig. 2d) we have: 
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Fig. (2). Steel members with different forms. 
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NUMERICAL RESULTS  

In order to study the buckling behavior of steel members 
with non-uniform cross section, we will use members having 
at x=0 the characteristic properties given by the following 
Tables 1 and 2 which refer to IPE and HEB standard pro-
files, respectively, according to European Norms for charac-
terization of standard steel sections. 

CONVERGENCE STUDY OF THE METHOD 

Studying first the convergence of the method, we see 
from the plots of Fig. (3) that the results arising from a solu-
tion using the first three eigenshapes and another solution 
using the first six eigenshapes coincide fully. We notice only 

a slight mismatch less than 0.1% for values of 7.1n  and 
for beam length L=10m. This very small difference is proba-
bly due to the numerical approach of the program used. 

We see also that for n=1 we recover the Euler critical 
buckling loads Pcr=

2
EI/L

2
 corresponding to simply sup-

ported axially compressed columns. 

DETERMINATION OF THE CRITICAL LOAD 

Applying the proposed formulae, we determine the criti-
cal loads Ncr versus n for columns with different lengths and 
cross-sectional types.  

In the following figures, the plots of critical loads are 
shown for beams with parabolic form made from IPE200 
and HEB200 standard profiles (Fig. 4), with tapered form 
made from IPE400 and HEB400 profiles (Fig. 5), for a beam 

Table 1. IPE Steel Profiles  

Profile IPE 200 IPE 400 IPE 600 

2·z (m) 
b (m) 
tw (m) 

tf (m) 
A (m2) 

I·10-4 (m4) 

0.183 
0.100 

0.0056 

0.0085 
0.002735 

0.213 

0.373 
0.180 

0.0086 

0.0135 
0.008068 

2.559 

0.562 
0.220 

0.0120 

0.0190 
0.01510 

10.604 

Table 2. HEB Steel Profiles 

Profile HEB 200 HEB 400 HEB 600 

2·z (m) 
b (m) 
tw (m) 

tf (m) 
A (m2) 

I·10-4 (m4) 

0.170 
0.200 
0.0090 

0.0150 
0.00753 

0.5871 

0.352 
0.300 
0.0135 

0.0240 
0.01915 

6.071 

0.540 
0.300 
0.0155 

0.0300 
0.02637 

18.688 

 

Fig. (3). Convergence study for IPE 200, (a) L=30m and (b) 

L=10m. 

 

Fig. (4). Critical loads for parabolic beams made from (a) IPE200 

and (b) HEB200 profiles with lengths 15, 20, 25 and 30m. 

 

Fig. (5). Critical loads for tapered beams made from (a) IPE400 
and (b) HEB400 profiles with lengths 15, 20, 25 and 30m. 
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composed by two tapered parts (Fig. 6), and for a stepped 
beam (Fig. 7) composed by three equal length parts with 
equal ni=n, where the part with the smaller cross-section is 
IPE200 and is loaded by a force N at , by P1=μ1  at 1 and 
by P2=μ2  at 2. 

In Fig. (5a) it is μ1=0, μ2=0, while in Fig. (5b) it is μ1=5, 
μ2=3. 

From Figs (4 to 7), we can easily see that the critical 
loads Ncr are significantly higher than the ones correspond-
ing to prismatic members (uniform cross-section) depending 
on the taper ratio n. As the taper ratio n increases the critical 
load also increases for all types of cross-sectional variation.  

Equilibrium Paths 

In the plots of Fig. (8), the equilibrium paths versus the 
axial load N are shown for a beam with parabolic form, 
length 20m and n=1.25 (Fig. 8a) and n=2 (Fig. 8b) which is 
loaded by moments of 10, 20 and 30 kNm. 

The Effect of Initial Imperfections 

In the plots of Fig. (9), the equilibrium paths versus N of a 

tapered beam with length 20m and f=L/300, L/500, L/1000 

with n=1.25 (Fig. 9a) or n=2 (Fig. 9b) are shown. 

 

Fig. (6). Critical loads for beams with two tapered pieces made 

from (a) IPE400 and (b) HEB400 profiles with lengths 15, 20, 25 

and 30m. 

 

Fig. (7). Critical loads for a stepped beam made from IPE200 with 

total length 20 and 30m, with (a) μ1=1, μ2=1 and (b) μ1=5, μ2=3. 

 

Fig. (8). Equilibrium paths for a parabolic beam made from IPE200 

with (a) n=1.25 and (b) n=2.0. 

 

Fig. (9). Equilibrium paths of a tapered beam with (a) n=1.25 and 

(b) n=2.0 and initial imperfections f. 
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Eccentrically Applied Loads 

Finally, the plots of Fig. (10) show the equilibrium paths 
for the special case of a parabolic beam with length 10, 20, 
or 30m and n=2, which is loaded by an axial force N acting 
eccentrically at e=0.5m (Fig. 10a) and e=1.0m (Fig. 10b). 

Some of the above results have been verified via the fi-
nite element method. More specifically, a tapered beam with 
lengths 20m and 30m made from IPE 200 profile and taper 
ratio n=1.5 has been modeled and analyzed for linear buck-
ling using the SAP-2000 v11 commercial FE code. The de-
viation between analytical and FE results is 2.07% for 
L=20m and 1.23% for L=30m (Fig. 5a). Moreover, a stepped 
beam with lengths 20m and 30m made from IPE 200 profile 
and taper ratio n=1.5 with μ1=μ2=1 has also been modeled 
and analyzed with the same code. In this case, the deviation 
between analytical and FE results is 1.64% for L=20m and 
1.15% for L=30m (Fig. 7a). 

SUMMARY AND CONCLUSIONS  

In this paper, a simple and efficient method for the study 
of non-uniform steel members with or without imperfections, 
loaded by axial forces concentrically or eccentrically applied 
and by moments at its ends or at intermediate points is pre-
sented. The governing equation of the problem including all 
the above parameters is solved by the Galerkin method using 
the eigenshapes of the member. 

The variation of the members’ cross-section may be 
whichever as well as the type of initial imperfections. The 
accuracy of the method is proven excellent using only the 
three first eigenshapes. A plasticity criterion is applied in 
order to predict material failure due to buckling deformation. 

The existence of bending moments or intermediate forces 
reduces not only the critical buckling load, but also the load 
arising from the failure criterion. 

The numerical results and the diagrams presented in this 
study refer to a number of cross-sections made from IPE and 
HEB standard profiles that are commonly used in steel struc-
tures. 

The presented formulae can be easily formulated in a 
personal computer using one of the available commercial 
programs (such as Maple, Mathematica, Matlab, etc). Al-
though in this work only the simply supported single-span 
beam-column is presented, it is obvious that the formulation 
can be extended to any type of frame members or frames 
using the corresponding eigenshapes. 

The results are presented in the form of diagrams either 
for the critical buckling loads or for the equilibrium paths, 
showing the influence of the main member’s characteristics, 
as for example the cross-sectional variation law, the interme-
diate loads and bending moments or the existing imperfec-
tions on the above mentioned buckling loads and equilibrium 
paths. Although these diagrams are derived for a simply sup-
ported beam-column they can be readily employed for the 
design of steel frames with such members through the use of 
the equivalent buckling length factor concept.  
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