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Abstract: This paper deals with the stability of steel web-tapered I-beams subjected to bending loads. Tapered beams can 

carry a maximum bending moment at a single location while in the rest of the member the moment carrying capacity is 

considerably lower. This results in appreciable savings in materials as well as in construction. Numerous researchers have 

focused on the investigation of the elastic behavior of tapered I-beams and many theoretical findings have been incorpo-

rated into the current specifications. According to Eurocode 3, the elastic critical moment is used for determining the de-

sign strength against lateral-torsional buckling (LTB) of I-beams with uniform cross-section and a number of coefficients 

is employed accounting for the boundary conditions, the cross-sectional geometry and the type of transverse loading, 

while no detailed information is given regarding non-uniform members. In this work a simple numerical approach is pre-

sented for determining the critical lateral-torsional buckling loads of web-tapered I-beams. Modification factors of the 

elastic critical moment with reference to the mean cross-section are given for various taper ratios. The results presented in 

graphical form are compared with those of previous investigations. The approach presented herein can be very easily ap-

plied for the design of tapered beams against lateral-torsional buckling. 
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INTRODUCTION 

Steel members with non-uniform cross-section are com-
monly used as beams in the design of various structures such 
as building frames, cranes, masts etc., due to the effort to 
minimize the total weight and subsequently the cost of the 
structure [1, 2]. The elastic buckling of beams with non-
uniform cross-section has been studied by numerous re-
searchers. Kitipornchai & Trahair [3] presented analytical 
and experimental results for tapered beams under transverse 
loads. Fraser [4] presented guidelines for the design of portal 
frames with tapered members, while Mendera [5] proceeded 
to the buckling strength of such members. Ermopoulos [6-9] 
analyzed buckling of tapered bars under bending and axial 
loading using the slope-deflection method, while Bradford 
[10] studied tapered beams subjected to unequal end-
moments. Recently, Andrade et al. [11] presented a one-
dimensional model for studying the lateral-torsional buckling 
behavior of singly symmetric web-tapered cantilevers and 
simply supported thin-walled beams, while Zhang & Tong 
[12] studied the same problem based on a new theory and the 
variational principle for buckling analysis. Finally, Khelil & 
Larue [13] presented simple solutions for the lateral buckling 
of beams with restrained flanges employing the Galerkin 
method. Many other researchers not mentioned herein have 
studied the tosinal-flexural buckling problem of columns 
with variable cross-section under both axial and transverse 
loads. 
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A stability analysis of the entire structure is required 
when designing such members according to Timoshenko & 
Gere [14], which leads to the determination of the exact 
buckling load of each member as well [15] according to the 
provisions of Eurocode 3. The main loading to the beams 
consists of bending moments and shear due to transverse 
loads or of end-moments. After determining the elastic criti-
cal moment of the beam, one may proceed to the design of 
the member against lateral-torsional buckling by following 
the provisions of Eurocode 3 [15] and computing the LT 
buckling strength. This step involves the use of the reduction 
factor LT, which is out of the scope of this work. 

Tapered beams are manufactured either from hot-rolled 
profiles cut in the web lengthwise and re-welded in a special 
arrangement or from assembling steel plates with fillet 
welds. As a result, the produced beam may also suffer from 
distortional buckling [3] and hence, the so-called taper ratio 
that is the ratio of the web heights at the two ends of the 
beam is of significant importance in our study. For the above 
reason and in order to avoid distortional buckling of the 
cross-section the taper ratio is kept within a reasonable range 
and thus, distortional buckling is not considered herein. 

In the present study, the influence of the taper ratio and 
cross-sectional geometry on the stability of non-uniform 
steel members that are subjected to bending loads is thor-
oughly investigated. The effect of shear forces is considered 
negligible. The problem is studied by focusing on web-
tapered I-beams with build-up cross-sections that are usually 
met in steel structures. The methodology is based on the 
formulation of the total potential energy and the numerical 
solution for buckling of beams with constant or variable 
cross-section [16]. The beams are considered simply sup-
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ported in bending, while other boundary conditions can be 
easily dealt with the approach proposed herein. Some charac-
teristic model cases are also analyzed via the finite element 
method [17] and the corresponding results are presented for 
comparison along with the analytical ones in the form of 
diagrams. 

More specifically, in this paper special emphasis is given 
on analytical models which provide qualitative results of 
buckling loads for tapered beams and establish the effect of 
properties’ variation on their buckling behavior. This is very 
helpful for the designer who can easily apply the proposed 
technique to compute with reasonable accuracy the elastic 
critical moments and hence, the load carrying capacity of 
such types of beams. The effect of taper ratio on the buckling 
strength of such beams is not dealt with in detail in the bibli-
ography. Employment of a detailed finite element analysis 
serves herewith for verification purposes only and both ana-
lytical and numerical results correlate with reasonable accu-
racy. Then, the analytical results for critical loads (obtained 
via the Rayleigh-Ritz method) referring to perfect members 
can be employed to determine the corresponding strength of 
the member by using the reduction factor LT. 

ANALYTICAL MODEL 

Consider the web-tapered I-beam with length  shown in 
Fig. (1). The beam has a doubly symmetric cross-section 
with variable height h(x), while the width b of the flanges 
and the thickness tw of the web and tf of the flanges are con-
stant along the length of the beam. The boundary conditions 
regarding the end-rotations of the tapered beam due to tor-
sion, which have been considered herein, are shown in Fig. 
(2). These boundary conditions apply simultaneously with 
the ones corresponding in bending. More specifically, if (x) 
is the angle of twist along the length of the tapered beam due 
to lateral-torsional buckling, the simply supported case cor-
responds to fixed rotation and free warping at the beam-end, 
while the fixed case corresponds to fixed rotation and fixed 
warping. The free condition corresponds to free rotation and 
warping of the beam-end and applies only to the case of a 
cantilever beam. 

 

Fig. (1). Geometrical characteristics of a web-tapered I-beam. 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Boundary conditions for end-rotations of the beam. 

 
The beam is subjected to a transversely applied loading 

in the form of uniform load q, concentrated load P or end-
moments M1 and M2= M1. In Fig. (3), one can see a tapered 
beam subjected to a uniform load q and the corresponding 
moment diagram for simply supported boundary conditions 
regarding bending. The moment distribution along the length 
of the beam from the above diagram can be expressed as 
follows 
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Fig. (3). Moment diagram for uniform load q. 

 

 

 

 

 

 

 

 

Fig. (4). Moment diagram for concentrated load P. 

 
The beam in Fig. (4) is subjected to a concentrated load P 

applied at the midlength producing the following moment 
diagram 

In this case, the moment distribution is given by 
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where the maximum moment M0 is given by 
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In Fig. (5), one can see a beam subjected to end moments 
M1 and M2 producing the corresponding moment diagram 

In this case, the moment distribution is given by 
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where in Fig. (5), M2= M1. 

As a final case study, we consider the cantilever shown in 
Fig. (6) that is subjected to a tip load P. The corresponding 
moment distribution can be expressed as follows 
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Fig. (5). Moment diagram for end-moments M1, M2. 

 

 

 

 

 

 

 
Fig. (6). Moment diagram for tip load P. 

 

The total potential energy VT of the above system is 
generally given by 

+= UV
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where U is the strain energy and  is the load potential. The 
strain energy for twisting (uniform and non-uniform torsion) 
can be written as 
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where GJ(x) is the torsional stiffness for uniform torsion (St. 
Venant) and ECw(x) is the warping stiffness for non-uniform 
torsion. Note that the above terms are not constant since the 
cross-sectional height is assumed to vary linearly along the 
length of the beam as given in the following relation 
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The cross-sectional properties needed for lateral-torsional 
buckling of the I-section shown in Fig. (1) can be determined 
from the following relations 
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The load potential  can be determined with the assumption 

of incompressible axis [16] from the following relation 
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where EIz is the flexural stiffness about the weak axis, zg is 
the distance between the point of application of the trans-
verse load q or P and the centroid and 0 is the angle of twist 
in the position of the concentrated load P, i.e. for x= /2. 
Thus, after substitution of eq(9) and eq(13) into eq(8), we 
arrive at the expression of the total potential energy VT, in 
which the only unknown is the angle of twist (x). Note also 
that secondary effects such as the Wagner effect are negligi-
ble for this type of cross-section. 

We next approximate the buckled shape of the beam tak-
ing into account the boundary conditions for rotation with 
reference to Fig. (2). Hence, in the simply supported case a 
suitable approximation can be taken as follows 
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Note that the three-term approximation for (x) is proven 
to be sufficient since the accuracy of the results is less than 
0.1% when keeping more terms. Introducing next the expres-
sion for (x) from eq(14) into the final form of the total po-
tential energy eq(8) and after integrating over the length, we 
obtain an expression of VT with respect to the unknown con-
stants Ci (i=1,2,3). Finally, we formulate the following ei-
genvalue problem 
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from which the buckling load and the corresponding mode is 
derived. 

Similarly, in the fixed-fixed case we take 
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and for the fixed-free case 
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For the fixed-simply supported case we choose a two-
mode approximation consisting from the corresponding flex-
ural buckling problem, where the buckled shape of the beam 
is 
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while, in eq(18), it is k=4.493. 

NUMERICAL RESULTS 

Solving the eigenvalue problem in eq(15), we obtain the 
buckling load and the corresponding mode. Our main con-
cern in this study lies in the cases outlined in the previous 
section, while results for more complex loading cases and 
boundary conditions can be similarly derived. In the numeri-
cal results presented herein in forms of diagrams, the influ-
ence of the web-tapering ratio on the critical load and mode 
of buckling in steel web-tapered I-beams is thoroughly in-
vestigated. 

In Fig. (7), one can see the critical load ratio Pcr/Pcr0 ver-
sus the taper ratio h2/h1 for various lengths of a tapered beam 
made from an IPE-300 profile. The loading consists from a 
concentrated load P applied at the midlength with point of 
application the top flange, i.e. zg=h0/2. The index 0 refers to 
properties and loads at the midlength of the beam corre-
sponding to the original uniform beam, i.e. IPE-300. The 
beam is considered simply supported for both bending and 
twisting.  

 
 

Fig. (7). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a simply supported beam with concen-

trated load P applied at the top flange. 

 
It becomes clear that as the taper ratio increases from 

h2/h1=1.0 (uniform beam) to h2/h1=3.0 (tapered beam), there 
is a drop of the critical load Pcr, that becomes even more 
pronounced in the cases of short beams. This drop is about 
4% for =10h, while for long beams the drop is less than 
1%. It must be noted at this point that although the differ-
ences in the critical loads seem to be small, the correspond-
ing differences in the critical load values may be significant 
depending on the both the taper ratio h2/h1 and the length . 
For example, the load Pcr0 which used as a reference load, 
corresponds to a uniform IPE-300 beam with h1=h2=h0=300 
mm, while if the taper ratio increases to h2/h1=3, the critical 

load is computed for a beam with h1=450 mm, h2=150 mm 
and h0=300 mm. 

In Fig. (8), one can see the corresponding diagram for the 
same beam, which is now considered simply supported for 
bending and fixed-fixed for twisting. In this case one can see 
that as the taper ratio increases from h2/h1=1.0 (uniform 
beam) to h2/h1=3.0 (tapered beam), there is an increase of the 
critical load Pcr up to 6% for =10h, while for longer beams 
the increase drops to 3.5%. 

 
 

Fig. (8). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a fixed-fixed beam with concentrated load 

P applied at the top flange. 

 
Similarly in Fig. (9), one can see the corresponding to the 

above diagram, where the beam is considered simply sup-
ported for bending and fixed-simply supported for twisting.  

 
 

Fig. (9). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a fixed-simply supported beam with con-

centrated load P applied at the top flange. 

 
In this case one can see that as the taper ratio increases 

from h2/h1=1.0 (uniform beam) to h2/h1=3.0 (tapered beam), 
there is a drop of the critical load Pcr up to 4.5% for =10h. 
The maximum drop occurs for taper ratios in the range of 
h2/h1=2.0 and h2/h1=2.5, while for higher taper ratios this 
effect is reversed. 

Next, we examine the same simply supported tapered 
beam where the concentrated load P is now applied at the 
centroid, i.e. zg=0. From Fig. (10), it becomes clear that as 
the taper ratio increases from h2/h1=1.0 to h2/h1=3.0, there is 
a drop of the critical load Pcr, that becomes even more pro-
nounced in the cases of short beams. This drop is now 3% 
for =10h, while for long beams the drop is less than 1%. In 
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Fig. (11), one can see the corresponding diagram for the 
same beam, which is considered fixed-fixed for twisting. As 
the taper ratio increases from h2/h1=1.0 to h2/h1=3.0, the cor-
responding increase of the critical load Pcr is up to 4.5% for 

=10h, while for longer beams the increase drops to 2.8%. 

 
 

Fig. (10). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a simply supported beam with concen-

trated load P applied at the centroid. 

 
In Fig. (12), we show the corresponding to the above 

diagram, where the beam is considered fixed-simply sup-
ported for twisting. 

 
 

Fig. (11). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a fixed-fixed beam with concentrated load 

P applied at the centroid. 

 
In this case one can see that as the taper ratio increases 

from h2/h1=1.0 to h2/h1=3.0, there is a drop of the critical 
load Pcr up to 3% for =10h. The maximum drop occurs 
again for taper ratios h2/h1=2.0 to 2.5, while for higher taper 
ratios this effect is reversed, as expected. In Figs (13 to 15) 
are shown the corresponding critical load versus taper ratio 
diagrams for various lengths and boundary conditions of the 
beam with concentrated load P applied at the bottom flange, 
i.e. zg=-h/2. The buckling behavior observed in these dia-
grams follows the pattern established previously with corre-
sponding differences in the critical loads less than 3%. From 
a comparison between Figs (7 to 15) the stabilizing effect of 
the load position zg is verified and the effect of the taper ratio 
on the critical load is well established for various boundary 
conditions. 

As a second case study, we examine the simply sup-
ported tapered beam subjected to a uniform load q applied at 

the centroid, i.e. zg=0. From Fig. (16), we can see that as the 
taper ratio increases from h2/h1=1.0 to 3.0, there is a drop of 
the critical load qcr, which becomes more pronounced in the 
cases of short beams. This drop is 3.3% for =10h, while for 
long beams the drop is less than 1%. 

 
 

Fig. (12). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a fixed-simply supported beam with con-

centrated load P applied at the centroid. 

 
 

Fig. (13). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a simply supported beam with concen-

trated load P applied at the bottom flange. 

Fig. (14). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a fixed-fixed beam with concentrated load 

P applied at the bottom flange. 

 

Comparing Figs (10 and 16) we see that there is a slight 
increase in the drop of the critical load and hence, the dis-
tributed load affects more the buckling behavior compared to 
the concentrated load. 
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Fig. (15). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a fixed-simply supported beam with con-

centrated load P applied at the bottom flange. 

 

 

 
 

Fig. (16). Critical load ratio qcr/qcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a fixed-simply supported beam with uni-

form load q applied at the centroid. 

 
In Fig. (17) we show the effect of the twisting boundary 

conditions on the critical load for a beam simply supported 
for bending with zg=0, =10h0 and various values of the 
taper ratio.  

 
 

Fig. (17). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous support conditions of a tapered beam with concentrated load P 

applied at the centroid. 

 

It becomes clear that a fixed condition tends to stabilize 
the tapered beam and the critical load increases with the in-
crease of the taper ratio (see fixed-fixed case) whereas in the 
cases with one or two simple supports the critical load drops. 

As a third case study, we examine the simply supported 
tapered beam subjected to end moments M1 and M2. In Fig. 
(18), one can see the critical load values versus taper ratio 
for a beam with length =10h and various values of the end-
moment ratio . It is clear that as the taper ratio increases 
from h2/h1=1.0 to 3.0, there is a significant drop of the criti-
cal moment Mcr with maximum value 12% for =-0.5, while 
for =1 the drop is only 4%. 

In Fig. (19), one can see the same as above diagram for 
the fixed-fixed case. We can see that as the taper ratio in-

creases from h2/h1=1.0 to 3.0, the critical moment Mcr also 

increases with maximum value 6.5% for =-1, while for 
other values of  the increase in almost 5.2%. 

As a final case study, we examine the tapered cantilever 
subjected to a tip load P applied at the centroid. In Fig. (20), 
one can see the critical load values versus taper ratio for a 
cantilever with various length values. In this case, as the ta-
per ratio increases from h2/h1=1.0 to 3.0, there is a significant 
increase of the critical load Pcr with maximum value 34% for 

=3h, while for longer lengths the drop decreases to 22%. 

 
 

Fig. (18). Critical moment ratio Mcr/Mcr0 versus taper ratio h2/h1 for 

various end-moment ratios of a simply-supported tapered beam. 

 
 

Fig. (19). Critical moment ratio Mcr/Mcr0 versus taper ratio h2/h1 for 

various end-moment ratios of a fixed-fixed tapered beam. 

 

In Fig. (21), one can see a comparison between the criti-

cal loads (moments) for lateral-torsional buckling of an IPE 

and a wide-flange HEB beam. The wide flanges have a stabi-

lizing effect on the critical load since the warping stiffness of 

the cross-section increases significantly. This effect seems 

not to be influenced by the web-tapering since the drop of 

the critical load is almost the same in both cases.  
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Fig. (20). Critical load ratio Pcr/Pcr0 versus taper ratio h2/h1 for vari-

ous slenderness ratios of a cantilever with a tip load P applied at the 

centroid. 

 
 

Fig. (21). Critical moment ratio Mcr/Mcr0 versus taper ratio h2/h1 for 

tapered beams made from IPE and HEB profiles. 

 
The above results obtained via the energy method corre-

late well, where applicable, with the analytical and experi-
mental results presented by Kitipornchai & Trahair [3] with 
a maximum deviation 1.2% regarding the analytical results 
and 2.3% regarding the experimental ones. Fine agreement is 
also observed with the results in form of graphs given by 
Bradford [10] for beams with unequal end-moments M at the 
larger and M at the smaller end. The maximum deviation 
with the results of this study was 1.9%. 

FINITE ELEMENT ANALYSIS  

Some characteristic cases of the above studies have also 
been validated via the Finite Element Method. For this pur-
pose, the Algor FEA commercial code [17] has been em-
ployed for linear buckling analysis. Such a detailed FE 
model of an I-beam with taper ratio h2/h1=2.0 build up from 
an original profile IPE-300 is shown in Fig. (22). The model 
consists of 1200 3-D oriented quadrilateral plate elements 
that are employed to model the flanges and the web of the 
tapered beam. More specifically, the lateral-torsional buck-
ling mode of the above model subjected to a uniform load q 
is shown in Fig. (23) for simply supported boundary condi-
tions. In Fig. (24), one can see the buckling mode for a ta-
pered cantilever model with taper ratio h2/h1=1.5 consisting 
from 600 elements which is subjected to a tip load P applied 
at the top flange. It is found that the analytical results pre-
sented herein correlate well with the corresponding FEA 
results with a maximum error less than 0.2%. 

 
 

Fig. (22). FE model of a tapered beam made from an IPE-300 pro-

file. 

 
 

Fig. (23). Lateral-torsional buckling of a simply sup-ported 
tapered beam under uniform load q. 

 
Note at this point that employment of the FE Method for 

lateral-torsional buckling always requires a detailed model of 
the beam with special care paid to boundary conditions in 
order to represent correctly bending, twisting and warping at 
the supported ends. On the other hand, the technique pre-
sented herein is much simpler regarding computational ef-
fort, while the boundary conditions are employed by a proper 
selection of the moment and buckling mode shape functions. 

 
 

Fig. (24). Lateral-torsional buckling of a tapered IPE cantilever 

under tip load P. 
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SUMMARY AND CONCLUSIONS  

In this study, the elastic buckling behavior of steel web-

tapered I-beams by means of determining the corresponding 

elastic critical moment for lateral-torsional buckling. This 

critical moment can be used for the determination of the cor-

responding member strength. More specifically, the influ-

ence of the taper ratio and cross-sectional geometry, the 

boundary conditions and the loading type on the stability of 

non-uniform steel members that are subjected to bending 
loads is thoroughly investigated. 

The most important conclusions that can be drawn from 
this study are: 

• The lateral-torsional buckling of web-tapered I-beams is 

always affected by the web-tapering ratio and the slen-
derness ratio. 

• Depending on the taper ratio and the slenderness ratio, 

the critical buckling load can be determined with refer-

ence to the original profile from which the tapered beam 

is manufactured. 

• As the taper ratio increases, the torsional buckling load 

decreases slightly for simply supported beams, while for 
fixed boundary conditions this effect is strongly reversed. 

• The influence of the taper ratio on the critical load of 

web-tapered I-beams is proven to be significant espe-

cially in the case of cantilevers and must be taken into 
when designing such members against buckling. 

• The technique presented herein is much simpler regard-

ing computational effort, while the boundary conditions 

are employed by a proper selection of the moment and 
buckling mode shape functions. 

 

REFERENCES  

[1] T. Galambos, Ed., Guide to Stability Criteria for Metal Structures, 

Wiley: New York, 1988. 

[2] G. Ballio, and F. M. Mazzolani, Ed., Theory and Design of Steel 

Structures, Chapman and Hall: London, 1983. 

[3] S. Kitipornchai, and N. S. Trahair, “Elastic stability of tapered I-

beams”, J Struct Div ASCE, vol. 98, no. ST3, pp. 713-728, 1972. 

[4] D. J. Frazer, “Design of tapered member portal frames”, Construct. 

Steel. Res., vol. 3, no. 3, pp. 20-26, 1983. 

[5] Z. Mendera, Buckling Strength of Tapered Steel Beams, Stahlbau, 

Ernst & Sohn, Berlin: 1995, vol. 64, no. 4. 

[6] J. Ermopoulos, “Buckling of tapered bars under stepped axial 

loads”, J. Struct. Eng. ASCE, vol. 112, no. 6, pp. 1346-1354, 1986. 

[7] J. Ermopoulos, “Slope-deflection method and bending of tapered 

bars under stepped loads”, Construct. Steel Res., vol. 11, no. 2, pp. 

121-141, 1988. 

[8] J. Ermopoulos, “Equivalent buckling length of non-uniform mem-

bers”, Construct. Steel Res., vol. 42, no. 2, pp. 141-158, 1997. 

[9] J. Ermopoulos, “Buckling length of nonuniform members under 

stepped axial loads”, Int. J. Comput.  Struct., vol. 73, pp. 573-582, 

1999. 

[10] M. A. Bradford, “Stability of tapered I-beams”, Construct. Steel 

Res., vol. 9, no. 3, pp. 195-206, 1988. 

[11] A. Andrade, D. Camotim, and P. B. Dinis, “Lateral-torsional buck-

ling of singly symmetric web-tapered thin-walled I-beams”, Com-

put. Struct., vol. 85, no. 17-18, pp. 1343-1359, 2007. 

[12] L. Zhang, and G. S. Tong, “Lateral-torsional buckling of web-

tapered I-beams: A new theory”, Construct. Steel Res., vol. 64, no. 

12, pp. 1379-1393, 2008. 

[13] A. Khelil, and B. Larue, “Simple solution for the flexural-torsional 

buckling of laterally restrained I-beams”, Eng. Struct., vol. 30, no. 

10, pp. 2923-2934, 2008. 

[14] S. P. Timoshenko, and J. M. Gere, Ed., Theory of Elastic Stability, 

McGraw-Hill: New York, 1961. 

[15] Eurocode 3, Design of steel structures. Part 1.1: General rules and 

rules for buildings. EN 1993-1-1. European Committee for Stan-

dardization: Brussels, 2004. 

[16] A. Chajes, Ed., Principles of Structural Stability, Englewood 

Cliffs: Prentice-Hall Inc, New Jersey, 1974. 

[17] C. C. Spyrakos, and I. G. Raftoyiannis, Ed., Linear and Non-linear 

Finite Element Analysis in Engineering Practice: Algor Publishing 

Division: Pittsburgh, PA, 1997. 

 

 

Received: December 09, 2009 Revised: January 20, 2010 Accepted: January 21, 2010 
 

© Raftoyiannis and Adamakos ; Licensee Bentham Open. 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 

 
 


