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Abstract: CP 2012 is used extensively throughout the world to design machine foundations for vibrations. The code, 

however, does not give practical advice on how to design a foundation with piles. CP 2012 models the soil as a system of 

undamped individual springs. A pile group may similarly be modelled as a system of springs, determined from the geo-

metric and material characteristics of the piles. The stiffness of a pile group is expressed in the same form as sub-grade re-

actions, permitting the use of the same dynamic equations given in CP 2012; thus, the code may be used for both cases—

soil and piles. The theory described in this paper is based on structural stiffness theory. Several assumptions are therefore 

made concerning the soil characteristics, effective length and boundary conditions of the pile. The derivation of the equa-

tions are given and compared to a simple finite element model.  

INTRODUCTION 

Designing foundations with piles for vibrating machinery 
is a difficult task for the simple reason that practical design 
methods are not readily available or published in codes of 
practice (Tomlinson PDCP 1987, British Standards 1974   
[1, 2]. A dearth of information on the subject has caused 
some designers to resort to commercial computer pro- 
grammes, such as PIGLET (Randolf PIGLET 2002) [3] and 
REPUTE

 
(Bond REPUTE 2002) [4], which are capable of 

analyzing pile groups.  

CP 2012, the Code of Practice for Foundations for Ma- 
chinery

 
(British Standards 1974) [2], is widely used in many 

parts of the world. The code provides explicit instructions on 
how to determine natural frequencies and amplitudes of  
vibration based on the assumption that the foundation can be 
modeled as a system of undamped individual springs (British 
Standards 1974, Richart VSF 1970, Irish FRM 1969) [2, 5, 
6]. The foundation block is assumed rigid and the spring 
stiff-nesses are derived from the properties of the soil. The 
code makes reference to Barkan’s (Barkan DBF 1962) [7] 
method to determine the soil stiffnesses (referred to as sub- 
grade reac-tions). Since the majority of foundations support 
ing vibrating machinery are founded on soil, the code is app- 
licable to most cases. However, when designing a founda- 
tion with piles, the method of design is not explicitly given 
by the code. There-fore, the objective is to present a simple 
method to determine the stiffnesses of a pile group which 
may be used in conjunction with CP 2012.  

The proposed method is similar to the design of a foun- 
dation block on soil. As mentioned, CP 2012 models the soil 
as a system of undamped individual springs. A pile group is 
similarly modeled as a system of springs (Tomlinson PDCP 
1987, Poulos GE 1978)[1,8]. The question, however, lies in 
what approach to determine the stiffnesses of a pile group. 
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The code suggests either: (i) carry out longitudinal and lat-
eral in situ loading tests on actual piles, or (ii) determining 
the relevant spring stiffnesses from the geometrical and ma- 
terial configuration of the pile group. Method (i) requires 
that the piles are already installed prior to the final design. 
This is the most accurate method, but may prove to be a 
costly exercise if the piles are found to be inadequate. 
Method (ii) is therefore the most favourable alternative and 
is the approach taken by the authors. 

 The theory described in this paper is based on structural 
stiffness theory which assumes an effective length and 
boundary conditions at the end of the pile. However, the ef- 
fective length and bearing conditions may not be apparent in 
some soil profiles; in these cases, specialist literature should 
be referenced. 

PILING ASSUMPTIONS 

Sources of resistance to piling forces are shaft friction 
and end bearing. Vibrations, however, may diminish the fric- 
tional resistance along the shaft, particularly in coarse soils. 
Furthermore, the imposition of lateral forces on the shaft 
may compact the surrounding soil, resulting in further dimin- 
ishing the frictional resistance. For these reasons, the fric- 
tional resistance along the shaft should be ignored in piles 
subjected to vibrations. Only where shear and moment fixi- 
ties of the toe of the pile are considered is stress from the soil 
on the shaft taken into account. In general, piles applied to 
vibrating foundations should be “end bearing type” and the 
shaft assumed to be free. 

Longitudinal settlement of the toe of the pile should be 
negligibly small. To achieve this, the pile should preferably 
be founded on rock, or sufficiently far into dense or stiff stra- 
tum so that an “effective length” of the pile may be esti- 
mated. This is the equivalent free length of a pile on a rigid 
base, such that its longitudinal stiffness is the same as that of 
the actual pile. 

Shear and moment fixities of the toe of the pile are 
achieved by sufficient embedment of the toe into a stiff and 
strong stratum. If a pinned toe connection is assumed, only 
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shear fixity is required. Although forces developed from 
shear across the base is usually small, sufficient shear resis-
tance can be developed from penetration of the pile by 1.5 
diameters into a stratum classified as “rock”. 

Moment fixity resistance should only be assumed if pow-

erful drilling equipment has enabled sufficient penetration 

into a stiff and strong stratum. Specialist geotechnical inves-
tigation and assessment of such a situation will be needed. 

INITIAL SIZING OF THE FOUNDATION 

Initial sizing of the foundation block is based on empiri-

cal rules. The code specifies three basic rules
 
(British Stan-

dards 1974) [2]. 

The first rule requires that the mass of the foundation is 

greater than the mass of the plant. Although no ratio is pro-

vided, usually in practice the mass of the foundation is 3 to 5 

times greater than the mass of the plant. This rule of thumb 

is given to minimize the amplitudes of vibration and is appli-

cable to foundations resting on soil or piles. 

The second rule is referred to as the 5% rule. This re-

quires that the plan geometric centre of the foundation is 

within 5% of the centre of mass. Since the dynamic loads are 

assumed to be applied through the centre of mass, compli-

ance to this rule will ensure an even distribution of stress to 

soil and therefore an even distribution of settlement. Uneven 

settlement may result in a further unbalance of forces as well 

as damage to pipes and equipment. Although this rule is ap-

plicable to foundation blocks resting on soil, it is not appli-

cable to foundations supported by piles—however, the no-

tion is the same. An even distribution of force to a set of 

piles is desirable. Since stiffness attracts force, an even dis-

tribution of force is only achieved by applying the force to 

the centre of stiffness. The 5% rule can still be applied but 

stated differently—the centre of mass should be within 5% 

of the centre of stiffness, viewed in plan.  

The third rule requires that the width of the foundation is 

at least equal to the distance from centre of the crank shaft of 

the machine to the bottom of the foundation. This rule is an 

attempt to ensure stability against overturning. Compliance 

with the first and the third rule will most likely satisfy stabil-

ity requirements and is suitable for initial sizing (assuming 

that the excitation force is not excessive). The final design, 
however, should include an overturning calculation.  

PILE GROUP STIFFNESS EXPRESSED AS A SUB-
GRADE REACTION 

The soil stiffness is referred to as the subgrade reaction. 

The value of stiffness, in units of stress per unit deflection, is 

called the coefficient of subgrade reaction. Four coefficients 

are used—the coefficient of uniform compression (cu), the 

coefficient of non-uniform compression ( c ), the coefficient 

of uniform shear (cr) and the coefficient of non-uniform 

shear (cs). These coefficients are defined in terms of the pile 

group stiffnesses, but expressed in the same form as coeffi-

cients of subgrade reaction, as described in the following 
sections 5.1 to 5.4.  

Coefficient of Uniform Compression 

The coefficient of uniform compression is determined 
from the spring system illustrated in Fig. (1). The foundation 
block is assumed rigid and the springs schematically repre-
sent the elastic properties of the piles.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1).  Foundation spring system for vertical deformations 

 

As a vertical load (R) is applied to the foundation block, 
a uniform deformation of  will occur in the piles. A pile 
configuration, where the centre of stiffness coincides with 
the centre of mass of the machine and foundation, is a neces-
sary prerequisite to ensure a uniform deformation. The verti-
cal stiffness of the piles (kv), is simply the load divided by 
the deformation. 

k R
v
= /               (1) 

Since piles may be vertical or raked, the calculation of 
stiffness must consider both cases, as illustrated in Fig. (2). 
As depicted, the total deformation of the pile may be broken 
down into two fundamental deformations—axial and shear. 
The axial deformation is represented by the symbol 

a
and 

the shear deformation (side sway) is represented by 
s
. 

Each of these deformations is associated with reactions Ra 
(axial) and Rs (shear). The stiffness of the pile depends on 
the moment fixity of the bearing end. 

a

s

R

R
a

Rs L

Raked Pile

Raked pile deformed
vertically

 

Fig. (2). Vertical deformations of a raked pile. 

R

Foundation Block
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as springs
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Coefficient of Uniform Compression for a Bearing End 
with Moment Fixity 

The stiffness equation for axial deformation is given in 
equation 2. 

R
EA

L
a a
=              (2) 

Since, 

a
= cos  

R
EA

L
a
= cos            (3) 

where E is Young’s modulus of the pile, A is the cross-
sectional area of the pile, L is the length of the pile and  is 
the angle of rake. 

Similarly for shear, the stiffness is given by equation 4. 

R
EI

L
s s
=

12

3
            (4) 

Since, 

s
= sin  

R
EI

L
s
=

12

3
sin            (5) 

As shown in Fig. 2, Ra and Rs are components of R. 

R R R
a s

= +cos sin  

Substituting equations 3 and 5, 

R
EA

L

EI

L
= +cos sin

2

3

212
  

Rearranged, 

R
EA

L

EI

L
k

v
= + =cos sin

2

3

212
   (6)  

The vertical stiffness is the quantity in brackets. The total 
stiffness is the sum of the stiffnesses of each pile. 

k
EA

L

EI

L
v

n

= +cos sin
2

3

2

1

12
     (7) 

where n is the number of piles. 

The pile group vertical stiffness is expressed in the same 

form as the subgrade reaction. 

c
k

A
u

v

p

=    (8) 

where Ap is the cross-sectional area of the pile group. 

Coefficient of Uniform Compression for a Pinned Bear-
ing End 

The derivation for the case of a pinned bearing end is 
similar to the fixed case. The difference is the term of the 

equation which represents the shear stiffness. The stiffness 
equation for a pinned bearing end is given in equation 9: 

=+=
v

k

L

EI

L

EA
R

2

3

2
sin

3
cos      (9) 

The stiffness of the pile group is the sum of the stiff-
nesses of each pile. 

+=

n

v

L

EI

L

EA
k

1

2

3

2
sin

3
cos       (10) 

Eqn 10 is converted into an equivalent subgrade reaction 
by equation 8. 

Coefficient of Non-Uniform Compression 

The coefficient of non-uniform compression is deter-
mined for problems where a non-uniform pressure is applied 
to the soil. Rocking and pitching moments will cause non-
uniform pressures. The foundation block spring system, sub-
jected to a moment, is illustrated in Fig. (3). As before, the 
springs represent the elastic stiffnesses of the piles.  

 

 

 

 

 

 

 

 

 

 
Fig. (3). Foundation spring system for rocking or pitching deforma-

tions. 

Coefficient of Non-Uniform Compression for Fixed and 
Pinned Bearing End 

If a rocking or pitching moment (M) is applied, the foun-
dation block will undergo a rotation ( ). The moment will 
produce a vertical deflection  and a reaction R in each pile.  

The moment contribution of a single pile is given in 
equation 11. 

RlM
i
=               (11) 

where l is the distance from the moment axis to the location 
of the pile. 

Since the pile will undergo a vertical deformation, the re-
active force is equal to equation 6 or 9, depending on the end 
condition of the piles. Substituting equations 6 or 9 into 11, 

lkM
vi

=  

For small angles of rotation, 

= l  

2
lkM

vi
=              (12) 

The rotational stiffness is therefore, 

k k l
v

=
2

 

MM

l

R
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The total moment (M ) is equal to the sum of equation 12 
for each pile. 

( )M k l
v

n

= 2

1

           (13) 

The rotation  is a constant and therefore pulled out of 
the summation. 

From Barkan
 
(Barkan DBF1962) [7], the moment is also 

expressed in terms of the subgrade reaction and the moment 
of inertia (Ip) of the pile group. 

M c I p=               (14) 

Equating equations 13 and 14, the coefficient of non-
uniform compression is solved. 

( )
c

k l

I

v

n

p

=

2

1              (15) 

The values l and Ip may change in the x and y directions. 
For this reason, equations 16 and 17 are defined accordingly. 

( )
c

k l

I
x

v y

n

px

=

2

1               (16) 

( )
c

k l

I
y

v x

n

py

=

2

1              (17) 

From equation 14, the rotational stiffness is determined. 

k c I p=                 (18) 

Substituting equations 16 and 17 into 18, the x and y 
stiffnesses for non-uniform compression is solved. 

( )k k lx v y

n

=
2

1

               (19) 

( )k k ly v x

n

=
2

1

                (20) 

Coefficient of Uniform Shear 

The coefficient of uniform shear is derived from the in-
teraction of the horizontal forces on the soil. The foundation 
block spring system is illustrated in Fig. (4). As shown, the 
springs are placed horizontally to represent the shear stiff-
ness of the soil. A raked pile is assumed to be deformed in 
the horizontal direction as shown in Fig. (5). Similar to the 
case of uniform compression, the total deformation is broken 
down into two fundamental deformations—axial and shear 
(side sway). The axial deformation is represented by the 
symbol 

a
and the shear deformation is represented by 

s
. 

These deformations are associated with reactions Ra (axial) 
and Rs (shear). 

Coefficient of Uniform Shear for Fixed Bearing End 

The stiffness equation for axial deformation is given by 
equation 21. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). Foundation spring system for horizontal deformations. 

 

 

 

 

 

 

 
Fig. (5). Horizontal deformations of a raked pile. 

R
AE

L
a a
=              (21) 

Since, 

a
= sin  

R
AE

L
a
= sin             (22) 

The stiffness for the shear (side sway) is given by equa-
tion 23. 

R
EI

L
s s
=

12

3
            (23) 

Since, 

s
= cos  

R
EI

L
s
=

12

3
cos           (24) 

The reactions Ra and Rs are components of R. 

R R R
a s

= +sin cos  

Substituting equations 22 and 24, 

R
AE

L

EI

L
= +sin cos

2

3

212
         (25) 

Rearranged, 

R
AE

L

EI

L
k

h
= + =sin cos

2

3

212         (26) 

The horizontal stiffness (kh) is the quantity in brackets. 
The total stiffness is the sum of the stiffnesses of each pile. 

k
AE

L

EI

L
h

n

= +sin cos
2

3

2

1

12       (27) 
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Foundation block
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The horizontal stiffness of the pile group is expressed in 
the same form as the subgrade reaction. 

c
k

A
r

h

p

=                (28) 

If the piles are raked, the horizontal shear stiffness may 
differ in the x and y directions, depending on the direction of 
rake. For this reason, the horizontal stiffnesses are deter-
mined in the x and y directions (khx and khy).  

In the direction of rake, the pile stiffness is based on the 
axial and side sway deformations of the pile. If the pile is not 
raked, the stiffness equation will only include side sway. To 
account for this, the rake angle  is replaced by cos

2
 

to determine the horizontal stiffness in the x direction and  
is replaced by sin

2  to determine the horizontal stiffness 
in the y direction. The angle  is the angle in plan of a raked 
pile, as shown in Fig. (6). The horizontal stiffnesses in the x 
and y directions are given in equations 29 and 30. 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

Fig. (6). Angle orientation of raked piles in plan. 

k
AE

L

EI

L
hx

n

= +sin ( cos ) cos ( cos )2 2

3

2 2

1

12   (29) 

k
AE

L

EI

L
hy

n

= +sin ( sin ) cos ( sin )2 2

3

2 2

1

12     (30) 

Furthermore, the coefficients of subgrade reactions are 
defined in the x and y directions. 

c
k

A
rx

hx

p

=                (31) 

c
k

A
ry

hy

p

=                (32) 

Coefficient of Uniform Shear for Pinned Bearing End 

The derivation of the coefficient of uniform shear for a 
pinned bearing end is similar to the derivation of the fixed 
bearing end case. The difference is the horizontal shear stiff-
ness term. 

+=

n

hx

L

EI

L

AE
k

1

22

3

22 )cos(cos
3

)cos(sin            (33) 

+=

n

hy
L

EI

L

AE
k

1

22

3

22 )sin(cos
3

)sin(sin        (34) 

The equivalent coefficient of subgrade reaction is deter-
mined by substituting equations 33 and 34 into equations 31 
and 32. 

Coefficient of Non-Uniform Shear for Fixed and Pinned 
Bearing End 

The coefficient of non-uniform shear represents the stiff-
ness of the soil determined from the twisting (or drilling or 
yawing) action of the foundation base. The applied moment 
is referred to as the yawing moment. The foundation block 
spring system is illustrated in Fig. (7). From the figure, the 
radius (lr) is the distance from the axis of the yawing mo-
ment to the location of the pile. The direction of deformation 
( ) and the calculated stiffness is orientated at right angles 
to the radius. The deformation is a function of the shear reac-
tion (Rs) and the angle of twist ( ). 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. (7). Foundation spring system of twisting deformations. 

 

The moment contribution of a single pile is equal to the 
horizontal shear reaction times the radial moment arm (lr). 

rsi
lRM =  

The horizontal reaction is equal to equation 26, at right 
angles to the radius. 

rhi
lkM =  

Where kh  is the horizontal stiffness at an angle  (at right 
angles to the radius). 

For a small angle of twist, 

= l
r

 

hri
klM

2
=              (35) 

The total yawing moment is equal to the sum of Mi for 

each pile. 

( )M l k
h

n

= 2

1

              (36) 

From Barkan
7
, the twisting moment is related to the polar 

moment of inertia (J) and the subgrade reaction c
s

. 

M c J
s

=                  (37) 

Where J is the polar moment of inertia of the pile group. 

Equating equations 36 and 37, the coefficient of non-
uniform shear is determined. 

x

y

Foundation
block

Raked pile

lr ly

lx

x

y

M

lr

Rs
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( )
c

l k

J
s

r h

n

=

2

1                 (38) 

From equation 37, the twisting stiffness is determined. 

k c J
s

=              (39) 

Combining equations 38 and 39, 

( )k l k
r h

n

=
2

1

            (40) 

The horizontal stiffness ( k
h

) is the stiffness at right an-
gles to the radius (lr).  

k k kh hx hy= +sin cos
2 2         (41) 

VALIDATION OF STIFFNESS EQUATIONS 

A simple pile configuration, supporting a vibrating 
foundation, is illustrated in Fig. (8). The four piles are raked 
(1:5), the effective length 2.65 metres long (2.7 m along the 
rake) and assumed fixed at both ends. The pile is end bear-
ing, cast into an underlying rock stratum and assumed fully 
fixed at the pile tip. The piles are raked in one direction 
along the x-axis. Other parameters, defining the properties of 
the piles are given below: 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Pile configuration of a foundation block. 

Pile diameter = 600 mm 

fcu = 30 MPa 

E (dynamic) = 38 GPa 

I = 6.36 x 10
-3

 m
4
 (single pile) 

Ipx = Ipy = 4.55 m
4
 (pile group) 

A = 2.83 x 10
-1

 m
2
 (single pile) 

Ap = 1.13 m
2
 (pile group) 

J = 1.27 x 10
-2

 m
3
 (pile group) 

The proposed stiffness equations are compared to an 
ABAQUS finite element solution. The model uses beam 
elements to represent the piles and shell elements (with an 
exaggerated E to make the block rigid) to model the block 
foundation. The stiffnesses of the pile group are determined 
by applying arbitrary forces to the finite element configura-
tion and solving for the deformations (or rotations). The 
stiffnesses are calculated by dividing the force by the defor-
mation or by dividing the moment by the rotation. The re-

sults are compared with the proposed theory and compiled in 
Table 1. Since the derivation of the theory is based on “first 
principles,” the equations are nearly identical to the finite 
element model. 

Table 1. Comparison of Stiffness Equations 

Pile Stiffness 

(4 Pile Grouping) 

Stiffness Equations 

(i.e., Eqns 7, 16, 17, 26, 

27 and 36) 

(N/m) 

Finite Element 

Solution 

(N/m) 

k
v

 1.53 x 1010 1.54 x 1010 

k
x

 6.12 x 1010 6.32 x 1010 

k y  6.12 x 1010 6.32 x 1010 

k
hx

 1.18 x 109 1.18 x 109 

khy  5.89 x 108 5.88 x 108 

k  7.07 x 109 7.05 x 1012 

 

EFFECTIVE LENGTH OF THE PILES 

In practice, it is often difficult to determine the effective 
length of a pile, due to a variation in soil properties along the 
profile. The question is whether the effective length extends 
to the depth of refusal of boring or driving, or if the soil is 
sufficiently stiff to provide fixity at a higher level? The ex-
ample given above is taken from an actual design. The soil 
profile consisted of a silty sand hillwash and sandy clay re-
sidual dolerites to a depth of 2.2 m. From 2.2 m to 5.5 m, the 
profile consisted of a soft rock dolerite. Although refusal 
occurred at 5.5 m, the effective length was assumed to be 
equal to the extent of the sandy clay residual dolerites (2.2 
m) plus 0.75 times the diameter of the pile—the soft rock 
was assumed to be sufficiently rigid to provide fixity. This 
assumption was substantiated by a load/settlement test on 
one of the piles. Load/settlement tests are common and 
specified by codes of practice

 
(South African Bureau of 

Standards 1983) [9]. The data for the single pile test is given 
in Fig. (9). The pile was initially loaded to 100% of working 
load to allow the pile to “settle in.” The load was removed 
and reapplied to full working load. The effective length of 
the pile was estimated by an elastic axial load/deflection 
relationship. 

 
 

 

 

 

 

 

 

 

 
Fig. (9). Results of a load/settlement test on a pile. 
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where  is the axial deflection, A is area of the pile, E is the 
elastic modulus and R is the axial load. 

The effective length was calculated at 2.82 m, which is 
reasonably close to the initial estimate of 2.65 m. It should 
be noted that the deflection ( ) is the recorded deflection at 
100% working load less the residual deflection once the load 
is removed at the end of the first cycle of loading. Since the 
loading was applied over a period of 24 hours, the elastic 
modulus is based on static loads. Although the usual objec-
tive of load testing is to determine the in-situ settlement of a 
pile, the data is useful to estimate the effective length.  

Although the above provides a simple and convenient 
method of estimating the effective length, the actual effec-
tive length is the result of a host of complex interactions be-
tween the pile and the surrounding soil. Initially and possibly 
during the life of the foundation, the vertical and lateral 
stiffness of the soil may be larger than the stiffness of the 
piles. However, under dynamic conditions, the influence of 
the surrounding soil is greatest at the beginning stages of 
vibration loading, but wanes with time as the soil is com-
pacted and so leaves a gap around the shaft. Therefore the 
above method is flawed in the sense that the test is static and 
the real load is dynamic. All of these factors should be con-
sidered when estimating the effective length and specialist 
literature should be consulted for a more exact estimate 
(Cairo CG 2005) [10].  

An in-situ test, however, potentially provides a close ap-
proximation of the effective length and boundary condition 
at the toe, particularly if axial strain measurements along the 
shaft in the test enable force distribution and hence surface 
shear stress v. shaft displacement relationships along the 
shaft to be determined. With these relationships, the “load 
transfer” method of determining the stiffness of the pile can 
be used (Coyle and Reese 1966) in which the contribution of 
upper soil strata where compaction may occur can be ig-
nored.  

CONCLUSIONS 

The proposed equations are a simplified method to model 
piling in a form that is adaptable to CP 2012. The theory, 
however, dictates that the pile must be end bearing, unre-
strained along the shaft and fixed or pinned at the bearing 
end. Although many pile types rely on skin friction, piles 
subjected to vibrations potentially lose the frictional bond 
between the soil and the shaft. For this reason, an unre-
strained shaft is assumed

 
(Tomlinson PDCP 1987) [1]. 

When applying the vibration equations of CP 2012, one 
should bear in mind that the values of A, I and J are values 
determined for a pile group, and are not associated with the 
base of the foundation. The analysis, however, does not in-
clude that which is commonly referred to as the “group ef-
fect” in the analysis of pile groups. This essentially results in 
the resistance of a group of piles being less than the resis-

tance of the same number of piles acting in isolation. For 
example Poulos and Randolph [11]. However, if degradation 
of the interaction between the pile shaft and soil by vibratory 
loads does take place, then this group effect will be small, 
and the conservative approach recommended here, to ignore 
the shaft to soil interaction except near the toe where in very 
strong strata it can provide fixity, is expected to offset the 
group effect [12]. 

Table 1 indicates that the proposed equations (which are 
derived from first principles) compare well with an 
ABAQUS finite element solution and therefore gives cre-
dence to the theory. Furthermore, since the properties of 
concrete are more predictable than soils, stiffnesses deter-
mined from a pile group are potentially more accurate than 
the stiffnesses determined from soil samples. Thus, a vibra-
tion analysis of a block foundation on a pile group is poten-
tially more accurate than a foundation on soil.  

As illustrated in the example problem, vertical load tests 
on piles can be used to estimate the effective length. This is 
particularly useful when the soil profile is such that the ef-
fective length cannot be clearly defined by inspection. How-
ever, this method of determining the effective length is ap-
plicable to foundations that are subjected primarily to verti-
cal vibrations. Where other modes of vibration are dominant, 
other testing methods or specialty literature should be 
sought. 
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