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Abstract: In Japan, the past few decades revealed the vulnerability of wood-framed residential buildings to strong earth-

quakes.  The Kobe earthquake in 1995 caused tremendous loss of lives resulting from the collapse and damage of such 

structures that significantly affected economic condition.  This disaster motivated many researchers to study the mecha-

nisms of collapse of engineering structures in order to prevent further loss of lives in the future.  In this paper, an innova-

tive methodology in simulating the dynamic response of wood-framed buildings, for purposes of seismic performance 

assessment and retrofitting, is presented.  The proposed method, which can simulate inelastic behavior of structures, is ca-

pable of showing realistic progressive collapse mechanisms and accurate seismic response of structures.  The sequence of 

analyses and results in the form of computer animations are used to help building owners gain a better understanding of 

the seismic performance of their buildings before and after the structural reinforcement. Applications to real wood-framed 

residential buildings were used to show the effectiveness of the methodology in seismic performance assessment as well 

as retrofit plan development. 

INTRODUCTION   

The evolution in computer hardware has significant im-
pact on computing science and engineering design. Desktop 
and portable computers nowadays are operating at tremen-
dous speed, have huge memory resources and even multiple 
processors, thereby permitting very fast computations never 
conceived before. Because of these advancements, several 
researches have been conducted to simulate various natural 
phenomena and to analyze problems that were previously 
infeasible. 

In civil engineering, computer experiments utilizing mul-
timedia and realistic computer animation reinforce, if not 
replace, traditional expensive experiments. Computer ex-
periments offer several advantages such that they allow 
analysis of structures at full-scale, experiments may be per-
formed at ideal conditions when necessary e.g. no air resis-
tance or friction, and they are not subject to physical limita-
tions inherent to experimental set-ups, e.g. maximum dis-
placement/velocity of shaking tables, etc. 

Efforts to simulate response of built structures to strong 
motion earthquakes attracted many researchers in the field of 
architecture and civil engineering. One of the most familiar 
accelerogram used is that of the Kobe earthquake in Japan 
which occurred in January 17, 1995 and caused enormous 
damage and destruction of structures and deaths in Kobe and 
in nearby areas. The disaster claimed more than 6,000 
deaths, injured more than 35,000 people and caused about 10 
trillion yen worth of damage. The death toll was reported to 
be mostly caused by collapse of buildings and breakdown of 
other civil engineering facilities. Investigation further re-
vealed that most deaths were due to collapse of traditional 
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wooden houses. This fact motivated structural and earth-
quake engineers to study the mechanisms of collapse of each 
wooden house and building in order to guarantee the safety 
of the general public in the occurrence of future earthquakes. 

Analysis of the collapse of engineering structures sub-
jected to strong ground motions or even blast loads, may be 
performed using a handful of methods. The popular finite 
element method allows modeling of structures at the material 
level, but its computational complexity has restricted its ap-
plication to analysis of basic structural elements such as 
beams, columns, and joints. Finite element analysis of an 
entire structure was regarded to be too tedious and that dy-
namic analysis exhibiting strong nonlinearity and discontinu-
ity requires a lot of computer power. 

This study presents a three-dimensional simulation of 
structure collapse during strong motion earthquakes, such as 
the 1995 Kobe earthquake, using Rigid Body-Spring Method 
(RBSM). Various modes of collapse of a wooden structure 
modeled as an assembly of rigid bodies connected by inelas-
tic links at their ends, will be presented. In modeling struc-
tural components, a link configuration is suggested to take 
into account structural damping and inelastic behavior. 

The main objectives of this study are to understand the 
process in which wooden houses collapse during earthquakes 
and to identify and reinforce the weak point of the structure. 
Specifically, it aims to  

1. simulate collapse mechanisms by modeling structural 
elements using rigid body-spring method implementing a 
configuration of inelastic links;  

2. investigate how the collapse progresses from the local 
failures of the framing members; and  

3. propose, with the use of an example, ways to reinforce 
a house to withstand strong ground shaking. 
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NONLINEAR ANALYSIS USING ASSEMBLY OF 
RIGID BODIES 

Originally proposed by Kawai [1], the basic approach of 
RBSM is to divide the given structure into appropriate num-
ber of rigid elements connected by spring systems. The dis-
placements are completely described by the positions and 
rotations of the rigid bodies while the deformation energy of 
the structure is stored in the spring system.  

In this paper, nonlinear analysis of structures will be car-
ried out by introducing nonlinear springs to take into account 
large displacements and failure of structures during strong 
motion earthquakes. 

POSITION AND ORIENTATION OF BODIES [2,3] 

In rigid body assemblies, various coordinates systems 
must first be well understood (Fig. 1). A rigid body in space 
is positioned with respect to the inertial coordinate system 
OXYZ by a vector r  attached to its mass center. Points that 
define the shape of the body or points where links are at-
tached, say point a , are defined by a vector s  in terms of 
local coordinates (with respect to Gxyz). If needed, the 
global coordinates of this point S  are computed as 

 

rRsS +=                                                                           (1) 
 

where R  is a rotation matrix that transforms coordinates 
from Gxyz frame to OXYZ frame. 

Orientation of the body can also be described using Ham-
ilton’s quaternion q  [3] so that Gxyz is obtained by rotating 
OXYZ about an axis u  by an angle � . 
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Fig. (1). Applied and effective forces on a rigid body and coordi-

nate systems used in computer animation. 

GOVERNING EQUATIONS [2,3] 

To animate various systems using rigid bodies, appropri-
ate forces must be taken into account. Forces that arise due 
to relative positioning of objects (e.g., contact or collision), 
object’s velocity, connections (e.g., springs and dampers), 
and user-specified vector fields (e.g., gravity and other ex-
ternal forces) must be exerted on bodies properly. These 
forces induce linear and angular accelerations depending on 
the mass and mass distribution of the body, respectively. 

The two fundamental equations used to analyze motions 
of rigid bodies in space are 

 

( ) ( )tmt rF &&=�                                                                   (3) 

( ) ( )tt GG HM &=�                                                             (4) 

where ( )tr&&  is the acceleration of the center of mass 

and )(tGH&  is the rate of change of the angular momentum 

about the mass center of the rigid body. If x , y  and z  axes 

coincide with the principal axes of inertia of the rigid body, 

Eq. (4) can be expressed in terms of the inertia tensor )(tI  

as 

 

� � MG (t) = I (t)��
•
(t)                                                (5) 

 
The above equations can be rewritten by first assuming 

 

( ) ( )tt vr =&                                                                             (6) 

 
&q t( ) = 1

2
� t( )� q t( ) = g q t( ),� t( )( )                            (7) 

 

where � t( )� q t( )denotes a shorthand of the multiplication 

of two quaternions 0,�(t)[ ]  and ( )tq . 

At any instant, the state of a rigid body is stored in a vec-
tor )(tx  consisting of its position, orientation, and its linear 
and angular velocities (Baraff [2]). Mathematically collected 
as, 
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The time derivative of the state vector can be set-up us-
ing Eqs. (3), (5), (6), and (7) as 
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This system of first-order differential equations are suffi-
cient to perform physically based animation of rigid bodies. 
Knowing the current state of the rigid bodies and the deriva-
tive information at any time, a differential equation solver 
can now be used to compute the state vector at a subsequent 
time. Euler method, as given in Eq. (10), for example can be 
used but since it is unstable and inaccurate, more sophisti-
cated methods such as Runge-Kutta method are appropriate. 
Although they are more computationally expensive than 
Euler method, large step sizes can be used resulting in an 
overall computational savings.  

 

)()()( ththt xxx &�+=+                                                 (10) 

 
Finally, it is important to note that the sum of forces and 

sum of moments about rigid body’s mass center in Eq. (9) 
include contact forces and collision forces (or impulses) 
when it moves relative to another rigid body. This of course 
entails the use of efficient collision detection routines.  Since 
collision detection, response and contact handling are well 
documented in computer animation and robotics, it will not 
be discussed in detail in this paper.  

EARTHQUAKE GROUND MOTIONS 

Throughout the scope of this paper, the earthquake accel-
erogram used was that observed at Kobe Marine Meteoro-
logical Observatory during of the 1995 Kobe earthquake as 
shown in Fig. (2). The maximum accelerations in EW-, NS-, 
and UD-directions are 6.0 m/s

2
 at 5.5 s, 8.2 m/s

2
 at 5.5 s, and 

3.3 m/s
2
 at 4.7 s, respectively.  

 

Fig. (2). Time history of ground acceleration of the 1995 Kobe 

earthquake used in analyses. 

SYSTEM OF NON-LINEAR SPRINGS AND DASH-

POTS 

Deformations and Restoring Forces of a Link 

A new link consisting of a spring and a damper, parallel 
to one another is introduced. Forces exerted to points on 
connected bodies are the vector sum of forces exerted by the 
spring and damper components.  The stress-strain behavior 
of materials, as modeled by springs, is idealized by the 
straight lines in Fig. (3). In this model the restoring force in 
tension is proportional to the strain up to YT�  with maxi-
mum yield restoring force YTF . The second straight line 
represents the strain-hardening characteristic until point C, 
when the restoring force reaches its ultimate value UTF . For 
different set of parameters YC� , YCF , UC� , and UCF , the 
behavior in compression can be modeled. 

 

 
 

Fig. (3). Force exerted by a link on rigid bodies. 

The restoring force exerted by the damper can be com-
puted similarly for any relative velocity as 

( )21 vvn ��=relv .  
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If the strain in the link exceeds its maximum value UT�  
or UC� , no subsequent forces are exerted to the connected 
bodies. The link is marked DELETED to aid analysis of link 
failure.  

Proposed System of Inelastic Links 

To simulate inelastic behaviour of structural components, 
a configuration of nonlinear links are positioned such as 
shown in Fig. (4a).  

 

 
 

Fig. (4). Example of link system used to model plastic hinges; (a) 

initial configuration, (b) deformation of links due to in plane dis-

placements dx , dz , and Y� . 

DEFORMATIONS AND RESTORING FORCES OF 
LINK SYSTEM 

Fig. (4b) shows the deformation of the link system (di-
agonal links not shown) due to in-plane displacements dx, dz 
and rotation about y-axis Y� . The elongation � of any 

spring can be computed by subtracting the original length 

0L  from the deformed length L of the spring where 
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Here, nX  is the coordinates of the endpoint of the spring 

on plane n  in the undeformed configuration.  

 
For spring numbered 1, we have 

 

 A1 XX = { }Taa 022 ��= and 

E2 XX = { }Taa l���= 22                              (12) 

 
and therefore the deformed length vector 1L  calculated us-
ing Eq. (11) becomes  
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Due to the given spring configuration, the displacements 

would simply the same amount of elongation for springs 1 
and 4 such that, 

 

01 LL �=�  
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4�=                                                                     (14) 

Similarly for spring numbered 2, the following expres-
sion can be derived, 
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And for the diagonal springs, we have 
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�11 = a2 + dx+ a
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The above set of equations are the expressions for the de-

formations of the links in Fig. (4b) for finite displacements 
dx , dz , and Y� . Assuming small values of displacements 
dx , dz , and Y� , these expressions can be simplified using 
the Taylor series expansion of ( )Yii dzdx ��� ,,=  about 
initial configuration ( ) )0,0,0(,, =Ydzdx � . Here, we can ne-
glect higher-ordered terms so that we have: 
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Assuming that all springs are initially undeformed, i.e. 
( ) 00,0,0 =i�  for i = 1…12, Eqs. (14)-(16) reduce to the ex-

pressions for infinitesimal displacements dx , dz , and Y� ,  
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Pure Axial Deformation 

A special case of deformation is when plane ABCD 
moves an infinitesimal distance dz relative to plane EFGH, 
as in Fig. (5a). The expression for the strains at each spring, 
with deformations obtained from Eq. (18) by setting 0=dx  
and 0=Y� ,  

l
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==== 4321 ����  
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                (19) 

the resultant restoring force TP  becomes 

dz
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where k and k' are spring constants for axial and diagonal 
springs, respectively. 

 

 
 

Fig. (5). Special cases of link deformations. 

Pure Shear Deformation 

Another special case of deformation is when plane 
ABCD moves an infinitesimal displacement dx  relative to 
plane EFGH, as in Fig. (5b). The strain on the springs, with 
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deformations obtained from Eq. (18) where 0== Ydz � , and 
the resultant restoring force QT and MT at the final configura-
tion are:  
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Pure Bending Deformation 

When plane ABCD rotates a small angle Y�  about an 
axis passing through P and perpendicular to the plane of the 
paper, as shown in Fig. (5c), the elongations of springs are 
obtained from Eq. (18) by setting 0== dzdx  so that the 
strains at each spring become 
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The resultant restoring force QT and the moment MT are 
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Effective Stiffness in Axial, Shear and Bending Deforma-

tions 

From Eqs. (20), (22) and (26) we have the following ef-
fective stiffness in axial, shear, and bending as 
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respectively for the link configuration.  

APPLICATION TO WOODEN HOUSES 

Dynamic Collapse of Conventional Wooden Houses 

Using the numerical method presented above, earthquake 
responses of typical wooden houses in Japan were computed. 
In modeling, the dead load of the floor slab, beams, columns, 
walls and roofs, and the live loads were estimated. The 
stress-strain curves for the material of the structural members 
were modeled. The model structures were then subjected to 

 

Fig. (6). Progressive collapse sequence of a wooden house. 

 
 
Fig. (7). A reinforcement plan of the wooden house. 
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doubly-amplified waves of the 1995 Kobe earthquake in Fig. 
2, and various collapse mechanisms of wooden houses were 
observed including (a) collapse due to the soft first story, (b) 
tumbling type collapse, (c) failure at the second floor due to 
the amplification of the vibration at the upper floor, and (d) 
collapse of intermediate floor. 

Even though the soft first story type of collapse is often 
stressed, the failure mechanism depends on the design and 
physical layout of the structure, i.e., strength and distribu-
tions of columns, beams and walls. For example, Fig. (6) [4] 
shows the response sequence of the two-storey wooden 
house. During the strong motion earthquake, the house de-
formed beyond the limit of linearly elastic behavior, and the 
southern portion of the first floor began to fail at around 3 s, 
and collapsed at about 4 s.  

In order to avoid the collapse in Fig. (6), several retrofit 
plans were developed such as shown in Fig. (7), where the 
red members indicate added columns and diagonal braces. 
The method proposed in this paper was then used to simulate 
the earthquake response of each of the reinforced houses. 
Results showed that the house in Fig. (7) withstood the same 
earthquake motions used in Fig. (6), i.e., the doubly-
amplified waves of the 1995 Kobe earthquake. Based on the 
obtained results, engineers can propose retrofit plans so 
house owners can improve the performance of their houses 
against earthquakes. 

RELIABILITY OF SIMULATED RESPONSE 

Most wooden houses in Japan are generally composed of 
frame units made of columns and beams, and walls. There-
fore, in order to establish the reliability and correctness of 
collapse simulation of an entire house, it is obligatory to 
show the agreement of simulated and experimental results 
for such structural units. Fig. (8) shows frames with different 
types of reinforcements. A monotonically increasing force 
was then applied horizontally to the upper beam of each 
frame, and the response was computed using the same pro-
gram that was used in Fig. (6). 

 

Fig. (8). Samples of wooden frame units. From right to left: 

wooden frames with (1) no end connection plate; (2) end connec-

tion plates; (3) plaster board; (4) siding board; (5) two single 

braces, plaster board and siding board; and (6) two double braces, 

plaster board and siding board. 

Based on the obtained response of the upper beam, the 
relationship between the displacement and force was plotted 
by solid lines in Fig. (9) for each frame unit (1) through (6). 
The experimental relationships obtained by Miyoshi et al. 
[5] were also plotted by dashed lines in Fig. (9). The numeri-
cal and the experimental curves agree well including the 
rigidity in small strain, the maximum strength, and the 
weakening process, and this shows the reliability of the 
simulation in this paper. 

CONCLUSIONS 

This research attempted to simulate seismic collapse of 

wooden houses subjected to the 1995 Kobe earthquake using 

the Rigid Body-Spring Method (RBSM) for the purpose of 

retrofitting. The following conclusions can be drawn: 

1. The proposed method is capable of demonstrating to 

some extent various collapse behavior of wooden houses 

during strong motion earthquakes. More accurately, the link 

system used to characterize plastic hinges of the simplified 

structural components can simulate local failure that causes 

the entire house to collapse during strong motion earth-

quakes. 

2. The method provides a way to identify the weak point 

of a structure thus allowing engineers to perform retrofitting 

analysis easily and to suggest ways to improve the seismic 

performance of built wooden houses. 

 
 

Fig. (9). Force-displacement relationships of wooden frames. 
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