
Open Constr. Build. Technol. J. ISSN: 1874-8368
DOI: 10.2174/0118748368389322250617072915, 2025, 19, e18748368389322 1

RESEARCH ARTICLE OPEN ACCESS

Comparative Analysis of Hyperparameter
Optimization Techniques for PCA–XGBoost Models in
SRCFSST Column Load Prediction

Megha Gupta1,*  and Satya Prakash1

1Department of Civil Engineering, Sharda University, Greater Noida, India

Abstract:
Introduction:  This  study  aims  to  predict  the  peak  axial  load  capacity  (PALC)  of  steel-reinforced  concrete-filled
square steel tubular (SRCFSST) columns under elevated temperatures using a machine learning-based approach. The
motivation  arises  from the  limitations  of  traditional  experimental  and  numerical  methods,  which  are  often  time-
consuming, costly, and computationally intensive.

Methods: A hybrid predictive framework was developed by integrating Principal Component Analysis (PCA) with
Extreme Gradient Boosting (XGB). The dataset, comprising 135 instances from prior experimental studies, underwent
PCA for dimensionality reduction, retaining 99% of the variance. The PCA-transformed data was used to train XGB
models, with hyperparameter tuning conducted via Grid Search, Random Search, and Bayesian Optimization. A 5-fold
cross-validation technique was employed to enhance model generalizability, and performance was evaluated using R2,
RMSE, and WMAPE.

Results:  Among  the  three  tuning  strategies,  the  Bayesian-optimized  PCA-XGB  model  demonstrated  the  highest
predictive performance with an R2 of 0.928, MAE of 2.3%, and RMSE of 3.5% on the test dataset. Statistical analyses,
including  paired  t-tests  and  Wilcoxon  signed-rank  tests,  confirmed  the  superiority  of  this  model  with  significant
improvements  over  other  configurations  (p  <  0.05).  The  use  of  PCA  notably  reduced  multicollinearity  and
computational  complexity.

Discussion:  The  findings  underscore  the  value  of  combining  dimensionality  reduction  with  advanced
hyperparameter tuning to develop efficient, accurate, and interpretable models for structural fire engineering. The
PCA-XGB-BO  framework  offers  a  viable  alternative  to  traditional  modeling  approaches,  particularly  for  complex
prediction problems involving high-temperature effects on structural components.

Conclusion: This  study establishes a robust  data-driven methodology for  estimating PALC in SRCFSST columns
exposed to high temperatures. The integration of PCA and Bayesian Optimization within an XGB modeling framework
delivers  high  accuracy  while  reducing  computational  burden.  Future  research  should  focus  on  extending  this
framework  to  other  structural  systems,  incorporating  physics-informed  constraints,  and  validating  performance
through large-scale experimental testing.

Keywords: Extreme gradient boosting (XGB), Principal component analysis (PCA), Steel-reinforced concrete-filled
square steel tubular (SRCFSST) columns, Hyperparameter optimization, High-temperature performance, Bayesian
optimization.
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1. INTRODUCTION
Concrete-filled steel tubular (CFST) columns are gaining

traction  as  essential  components  in  building  construction
because  of  their  high  strength-to-weight  ratio,  effective
construction  techniques,  and  ability  to  withstand  earth-
quake forces [1]. The parts formed from these materials can
efficiently  provide  structural  support  to  tall  structures,
bridges, and numerous other load-bearing structures owing
to  the  tensile  and  ductile  qualities  of  steel  while  utilizing
the compressive strength of concrete [2, 3]. The shape and
structural  geometry  of  CFST  columns  eliminate  the
disadvantages of space and weight for extremely tall buil-
dings  because  they  have  a  low  volume  to  resist  lateral
forces  [4,  5].  Despite  these  advantages,  CFST  columns'
performance  under  extreme  scenarios,  particularly  pro-
longed  exposure  to  high  temperatures  during  fire  events,
remains a critical concern. These columns are particularly
effective in buildings exposed to prolonged fire conditions,
as the concrete inner core acts as an insulator, protecting
the steel by slowing down heat transfer [6]. However, it is
essential  to  understand  how  CFST  columns  respond  to
extreme  heat  to  maintain  structural  stability  in  irres-
ponsible situations such as fire outbreaks. There is a great
risk that the high temperature may damage both the steel
tube  and  concrete  core,  which  raises  concerns  regarding
the  structural  properties  of  the  CFST  columns  and,  con-
sequently, the safety of the building system [7, 8].

Some  experimental  research  has  been  carried  out  to
assess  the  thermal  and  mechanical  properties  of  CFST
columns exposed to high temperatures. Franssen and Kodur
(2001) conducted fire tests to analyze the fire resistance of
such  columns,  observing  the  dominant  effect  of  tempe-
rature  on  the  load-carrying  capacity  of  structures  [9].
Similarly,  the  fire  behavior  of  CFST  columns  has  been
investigated in terms of their residual strength, with studies
concluding  that  a  certain  portion  of  the  load-bearing
capacity can be retained after cooling, owing to the thermal
choking  effect  of  the  concrete  core  [10].  Nevertheless,
despite  the  valuable  insights  gained  from  these  experi-
mental  studies,  their  practical  applicability  is  limited  by
factors such as high costs, preparation complexity, standa-
rdized testing conditions, and the unpredictable nature of
real-world  scenarios.  On  top  of  that,  the  high  variety  of
concrete mixtures and steel types utilized in CFST columns
renders  a  conclusion  drawn  from  the  experiments  less
convincing.

While experimental investigations yield useful informa-
tion, practical considerations like cost, controlled environ-
ments, and variations in material composition point to the
necessity  of  looking  beyond.  Numerical  methods  have,
therefore, been utilized to model the performance of CFST
columns during fire exposure. The finite element modeling
(FEM) method was utilized to calculate the thermal profile
and  thermal  stresses  within  the  CFST  columns  following
exposure  to  fire.  These  researches  have  shown  accurate
predictions  of  CFST  structural  behavior,  such  as  but  not
restricted to thermal gradients, on the individual elements
of  CFST  and  the  geometry  of  the  whole  column  [11,  12].
Finite  element  models  are  beneficial  for  researchers  who
want to investigate the effects of specific parameters with-

out  having  to  perform  physical  tests  [13].  However,  such
methods are time-consuming and need extensive material
property  information  in  order  to  find  the  correct  results
[14].

Recent research has extensively studied the structural
performance of steel–concrete composite systems. Song et
al.  highlighted  the  significant  impact  of  flange  thickness
and foundation stiffness on the shear contribution via dowel
action  in  steel–concrete–steel  composite  structures  [15].
Researchers reported improved ductility and energy dissi-
pation  in  rubberized  concrete-filled  steel  tubes  despite
reduced  concrete  strength  [16,  17].  Nie  et  al.  confirmed
that  uplift-restricted  and  slip-permitted  screw-type  con-
nectors significantly enhance crack resistance and seismic
resilience in composite frames without considerably affec-
ting structural bearing capacity [18].

Owing to the limitations in performing numerical simu-
lations  of  fire  scenarios,  such  as  modeling  of  nonlinear
thermal  and  mechanical  responses,  other  methods  have
been explored by scientists. Given the challenges associated
with  both  experimental  and  numerical  approaches,  there
has been a growing interest in data-driven modeling tech-
niques, particularly soft computing and machine learning,
for  evaluating  the  performance  of  CFST  columns  under
extreme  conditions.

Soft computing techniques have undergone significant
advancements  over  the  past  few decades,  initially  finding
widespread applications in medical and healthcare domains
before  being  increasingly  adopted  in  engineering  disci-
plines. Early implementations primarily focused on solving
complex biological and epidemiological challenges, such as
modeling  pandemic  risks,  genetic  susceptibility  in  severe
diseases,  and  AI-driven  predictive  diagnostics  [19-21].
These approaches leveraged heuristic algorithms, artificial
neural networks (ANNs), and machine learning frameworks
to enhance medical decision-making and disease prognosis.
Over time, the success of soft computing in medical appli-
cations  catalyzed  its  integration  into  engineering  fields,
where  challenges  such  as  high-dimensional  data,  uncer-
tainty, and nonlinearity necessitate more advanced compu-
tational  techniques.  In  structural  and  geotechnical  engi-
neering, data-driven approaches incorporating soft compu-
ting have revolutionized predictive modeling, optimization,
and  reliability  assessment.  Recent  advances  in  artificial
intelligence  and  hybrid  learning  models  have  enabled
precise  estimations  of  material  behavior,  structural  stabi-
lity, and fire resistance in critical infrastructure. The inte-
gration  of  machine  learning  with  hyperparameter  tuning
techniques, as demonstrated in this study, exemplifies how
soft computing principles have evolved from medical diag-
nostics  to  engineering  solutions,  bridging  computational
intelligence  with  real-world  structural  challenges  [21].

The work done by Researchers has demonstrated that
various  machine  learning  frameworks,  such  as  artificial
neural  networks  (ANN)  and  support  vector  machines
(SVM), can be reliably used to estimate the axial capacity of
concrete-filled  steel  tubular  (CFST)  columns  [22,  23].  All
ML models were fitted to experimental and simulated data
to learn the axial load capacity as a function of several input
variables,  including  the  material  properties  and  column
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dimensions. Although they have proven to be good at mak-
ing these predictions, such methods tend to ignore the poss-
ibility of using these approaches for feature selection and
data dimension reduction, which improves the efficiency of
the  model  and  the  clarity  of  its  interpretation  [24,  25].
Despite  the  positive  outlook  on  ML  solutions  for  design
problems,  several  issues  still  require  further  research.
Several studies have applied regular machine-learning algo-
rithms  in  the  absence  of  any  attempts  to  redesign  the
feature space, which often causes overfitting and a lack of
generalizability to other datasets [26]. The contribution of
dimensionality  reduction  techniques,  such  as  Principal
Component Analysis (PCA), has not been adequately discus-
sed in  this  field,  despite  their  ability  to  reduce the comp-
lexity  of  the  input  data  and  enhance  the  computational
speed  without  losing  the  prediction  capability.  Moreover,
hyperparameter tuning, which is a crucial strategy for the
improvement of machine learning models, particularly with
SRCFSST column systems (Fig. 1), has not been addressed.
Research  comparing  approaches  such  as  grid  search,
random search, and Bayesian search with respect to their
effectiveness in tuning models that forecast the behavior of
SRCFSST at elevated temperatures is also scarce.

This  research  is  motivated  by  the  hypothesis  that  the
combination  of  Principal  Component  Analysis  (PCA)  with
Extreme  Gradient  Boosting  (XGB)  and  optimized  hyper-
parameter tuning methods greatly improves the predictive
precision and efficiency of peak axial load capacity (PALC)
prediction for high-temperature steel-reinforced concrete-
filled square steel tubular (SRCFSST) columns. In order to
test  this  hypothesis,  the  research  aims  to  answer  three
major research questions. First, it explores the efficiency of
the  PCA-XGB  model  in  the  prediction  of  the  PALC  of
SRCFSST columns in  comparison with  conventional  expe-
rimental  and  numerical  methods.  Second,  it  analyzes  the
relative  performances  of  various  hyperparameter  search
methods—Grid  Search  (GS),  Random  Search  (RS),  and
Bayesian  Optimization  (BO)  —with  the  aim  of  identifying
their  contribution  to  enhancing  model  accuracy  and  resi-
lience.  Third,  it  investigates  whether  the  incorporation  of
dimensionality  reduction  methods  like  PCA  can  reduce
overfitting risks and improve the computational efficiency

of machine learning-based predictive models for structural
fire engineering applications.

By addressing these research questions, this study aims
to fill existing gaps in the application of machine learning
for structural performance prediction under fire conditions.
The  suggested  methodology  (Fig.  2)  consists  of  analyzing
the PALC of SRCFSST columns at high temperatures. To do
this, we employed XGB and PCA-enhanced XGB. This rese-
arch effectively utilizes PCA due to its ability to reduce the
dimensions of the data, which simplifies the data and is exp-
ected to improve the model's robustness. Besides, various
hyperparameter  tuning  methods,  including  grid  search,
random search, and Bayesian Optimization, have also been
examined in order to improve the performance of the model
in accuracy as well as efficiency.

This  research  stands  out  for  its  comprehensive  app-
roach,  as  it  combines  PCA and  advanced  hyperparameter
tuning with XGB to develop a robust predictive system for
SRCFSST columns exposed to high temperatures. By expli-
citly  formulating  the  hypothesis  and  research  questions,
this study provides a structured framework that enhances
the reader’s understanding of the research objectives, met-
hodology,  and  contributions  to  the  field  of  structural  fire
engineering.  The  findings  not  only  contribute  to  the  adv-
ancement of machine learning applications in fire-resistant
design  but  also  lay  the  foundation  for  future  studies  ex-
ploring  intelligent  computational  methods  for  predicting
structural  element  failure  under  extreme  loads.

2. METHODOLOGY
The methodology shown in Fig. (3) employed to forecast

the  PALC  of  SRCFSST  columns  at  elevated  temperatures
involves integrating PCA for dimensionality reduction with
XGB  for  predictive  modeling.  The  dataset  containing  135
data points was first standardized to ensure uniform contri-
bution  from  all  features.  In  order  to  optimize  the  perfor-
mance  and  effectiveness  of  the  machine  learning  models,
Linear Normalization was employed to standardize the raw
data. This technique, as described [27], scales all indepen-
dent  variables  to  a  range  between  0  and  1,  utilizing  the
equation provided [27].

Fig. (1). Cross section of SRCFSST column.
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Fig. (2). Progressive steps in model development and evaluation framework.

Fig. (3). Methodology flowchart.

A covariance matrix was computed to examine interde-
pendencies  among  input  parameters,  and  eigenvalues  and
eigenvectors  were  derived,  allowing  the  identification  of
principal components that best capture data variance. The
selection of principal components was based on 99% cumu-
lative  variance,  reducing  the  feature  set  while  retaining
essential  information.  The  transformed  dataset,  now  with
reduced dimensions, was utilized as the input for the XGB
model.

After  normalizing  the  dataset,  70%  was  used  for  trai-
ning and the remaining 30% was used for testing. The trai-
ning set was also used for cross-validation purposes and to
adjust the hyperparameters of the XGB model. To increase
the  reliability  of  the  predictions,  a  5-fold  cross-validation
method  was  used  during  the  training  course.  To  improve
model  performance,  three  hyperparameter  optimization
techniques, grid search, random search, and Bayesian opti-
mization, were employed.
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PCA was used to address issues of high dimensionality
and  potential  multicollinearity  in  the  input  data,  both  of
which  could  have  adverse  effects  on  model  correctness.
This technique reduced the dataset and increased the pre-
diction  accuracy  by  reducing  the  input  variables  to  five
main  components,  which  captured  99% of  the  cumulative
variance  while  retaining  crucial  information  from the  ori-
ginal dataset. The resulting condensed dataset was utilized
to build a new PCA-XGB model.

The tuning and cross-validation of the PCA-XGB model
were performed in the same way as those of the original
XGB  model,  with  hyperparameters  fine-tuned  using  grid
search,  random  search,  and  Bayesian  optimization.  The
specific  ranges  of  hyperparameters  tested  during  each
tuning technique were carefully selected to ensure a com-
prehensive optimization process. Grid Search (GS) syste-
matically evaluates a predefined range of hyperparameter
values  by  testing  different  configurations,  including  the
number of boosting rounds (n_estimators) set at 100, 200,
300, and 400, the learning rate (learning_rate) varied at
0.01,  0.05,  0.1,  and  0.2,  the  maximum  depth  of  trees
(max_depth) explored at 3, 5, 7, and 9, the subsample ratio
of  training instances (subsample)  considered at  0.6,  0.7,
0.8,  and  0.9,  and  the  column  sample  ratio  (colsample
_bytree)  tested at  0.3,  0.5,  0.7,  and 0.9.  Random Search
(RS)  takes  a  different  approach  by  selecting  hyper-
parameter combinations randomly from a broader search
space to explore diverse values with a reduced computa-
tional cost. The tested ranges for Random Search included
the  number  of  boosting  rounds  (n_estimators)  between
100  and  400,  the  learning  rate  (learning_rate)  varying
from 0.01 to 0.2, the maximum depth of trees (max_depth)
between 3 and 9, the subsample ratio of training instances
(subsample)  ranging  from  0.5  to  0.9,  and  the  column
sample ratio (colsample_bytree) set between 0.2 and 0.8.
In contrast, Bayesian Optimization (BO) employs a proba-
bilistic model to dynamically refine the search space, ensu-
ring a  more efficient  search for  optimal  hyperparameter
configurations.  The  hyperparameter  search  space  for
Bayesian  Optimization  included  the  number  of  boosting
rounds (n_estimators) ranging from 150 to 400, the lear-
ning rate (learning_rate) between 0.01 and 0.15, the maxi-
mum depth of trees (max_depth) varying from 4 to 10, the
subsample ratio of training instances (subsample) between
0.6  and  0.9,  and  the  column  sample  ratio  (colsample_
bytree)  within  the  range  of  0.3  to  0.9.  Bayesian  Optimi-
zation  provided  the  best  hyperparameter  combination,
achieving  superior  performance  with  the  lowest  Root
Mean  Square  Error  (RMSE)  and  highest  R2  score.  The
optimized  PCA-XGB  model  was  tested  on  30%  of  the
dataset,  confirming its  predictive accuracy in estimating
SRCFSST  column  axial  load  capacity  under  high-tempe-
rature conditions. The enhanced implementation details of
PCA  and  XGB  now  ensure  full  transparency,  facilitating
the  replication  of  this  study  by  researchers  and  practi-
tioners.

This detailed explanation of the hyperparameter search
space  ensures  transparency  regarding  the  scope  of  opti-
mization and the computational considerations involved in

the  tuning process,  providing clarity  on  how each optimi-
zation technique was implemented to enhance the predic-
tive  performance of  the  PCA-XGB model.  The selection  of
hyperparameters  was  based  on  their  impact  on  model
generalizability and prediction accuracy, ensuring that the
final tuned models achieved optimal performance.

After  determining  the  best  parameters,  the  XGB  and
PCA-XGB models were tested on a 30% sample of the data
to  assess  their  precision  in  forecasting  the  PALC  of  the
SRCFSST columns under elevated-temperature conditions.
This extensive approach enabled a rigorous assessment of
the model's correctness and efficiency, resulting in a robust
methodology for forecasting the PALC of SRCFSST columns
under high-temperature conditions.

3.  COMPUTATIONAL  METHOD  AND  PRINCIPAL
COMPONENT ANALYSIS

3.1. Extreme Gradient Boosting
Extreme  Gradient  Boosting  (XGB)  is  a  sophisticated

machine  learning  algorithm  that  enhances  predictive
accuracy by combining multiple decision tree models within
an ensemble framework [28]. It is widely recognized for its
performance across diverse application areas and excels in
structured  data  analysis  through  iterative  learning  from
multiple trees [29]. XGB has since evolved into one of the
most reliable and efficient algorithms in the field [30]. Its
fundamental goal is to optimize a given loss function using
gradient descent techniques, thereby minimizing prediction
error during training [27, 31].

In XGB, the objective function consists of two main com-
ponents: a loss function and a regularization term. The loss
function  measures  the  difference  between  the  predicted
outcomes and the actual target values, guiding the model
toward  better  accuracy  [27].  Unlike  traditional  Gradient
Boosting  Machines  (GBM),  XGB  includes  a  regularization
term  that  helps  control  model  complexity  and  prevents
overfitting,  thereby  improving  the  model’s  generalization
capability [28, 31-33].

XGB follows a level-wise growth strategy in algorithmic
tree design, increasing efforts towards tree construction by
depth. Although computationally expensive, this approach
reduces  model  performance.  The  algorithm introduces  an
objective function for loss aversion and weight penalties to
curtail overfitting. It implements a shrinkage factor for each
added tree, reducing tree strength and allowing model im-
provement.  XGB  builds  trees  by  sampling  training  sets
column-wise,  helping  to  humble  the  model  and  minimize
overfitting.  These  factors  make  XGB  a  strong  predictive
modeling technique [34].

3.2. Principal Component Analysis
Hotelling popularized PCA, a widely utilized method in

science and engineering research [35]. PCA is a dimension-
reduction  method  that  converts  a  set  of  correlated  attri-
butes  into  a  fewer  number  of  uncorrelated  components
called principal components. Not only does this reduce the
complexity of data interpretation, but it also increases effi-
ciency in computation since the original data set is depicted
using fewer variables with the most variance maintained.
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The process of transformation in PCA is founded on the
eigenvalue decomposition of the covariance matrix, wherein
the  principal  components  are  chosen  in  terms  of  the
eigenvalues that they are associated with. They are ordered
in the decreasing order of variance, and the first principal
component  retains  the  maximum possible  variance  in  the
dataset, followed by the next components in the declining
order.  As  such,  PCA  correctly  selects  the  most  important
features of a dataset and hence enables enhanced analysis
and decision-making. The detailed mathematical represen-
tation of PCA appears in a few studies [27, 36].

In  practical  implementation,  PCA  follows  these  key
mathematical  steps  to  achieve  dimensionality  reduction:

3.2.1. Standardization
To ensure that all features contribute equally, the data-

set is standardized by subtracting the mean and dividing
by the standard deviation for each feature. Given a dataset
X  with  n  observations  and  p  features,  the  standardized
value Xnorm is given by Eq. (1)

(1)

where μ is the mean and σ is the standard deviation of
each feature.

3.2.2. Covariance Matrix Calculation
The covariance matrix  C is  computed using Eq.  (2)  to

analyze the relationships between features.

(2)

This  matrix  captures  the  variance  within  each  feature
and the covariance between different features.

3.2.3. Eigenvalue Decomposition
PCA transforms the dataset by identifying eigenvalues

and eigenvectors of the covariance matrix as given in Eq.
(3)

(3)

where  λ  represents  the  eigenvalues,  and  v  represents
the corresponding eigenvectors.

3.2.4. Principal Component Selection
The  eigenvectors  corresponding  to  the  highest  eigen-

values  constitute  the  principal  components.  These  compo-
nents  are  arranged  in  descending  order  based  on  their
variance contribution, calculated using Eq. (4), and the first
K components are selected such that they retain the majority
of the variance.

(4)

In  this  study,  Principal  Component  Analysis  (PCA)  was
employed to reduce the dimensionality of the dataset from
11  features  to  five  principal  components,  which  retained
99% of the cumulative variance. This selection facilitated the
model's  focus  on  the  most  informative  features  while
eliminating  redundant  and  correlated  attributes.

3.2.5. Transformation to New Feature Space
The original dataset X is projected onto the new feature

space defined by the selected eigenvectors using Eq. (5)
(5)

where VK is the matrix of the top K eigenvectors.
By  applying  PCA,  the  dataset  was  transformed  into  a

lower-dimensional  space,  improving  computational  effici-
ency  and  reducing  the  risk  of  overfitting  in  the  machine-
learning model. The integration of PCA with XGB ensured
that only the most critical information was retained, leading
to improved predictive performance.

3.3.  Hyperparameter  Tuning,  Optimization  and  5-
Fold Cross-validation

It  is  necessary  to  select  an  appropriate  optimization
approach  for  hyperparameter  tuning  for  an  effective  per-
formance configuration. In traditional optimization techni-
ques, the technique is not very effective in hyperparameter
tuning because most hyperparameter tuning problems are
non-linear or non-smooth optimizations that are more likely
to  be  trapped  locally  rather  than  global  optima.  For  ins-
tance, methods based on gradient descent are often emp-
loyed in reinforcement learning to modify hyperparameters
that are continuous in nature, such as the learning rates in
neural  networks  [37].  However,  unlike  popular  methods,
such as gradient descent, a number of other strategies have
emerged  that  are  more  relaxed  than  HPO  [38].  For
instance,  decision-theoretic  frameworks,  Bayesian  optimi-
zation, multi-fidelity optimization, and metaheuristic appro-
aches offer more management power and efficacy for both
continuous and discrete hyperparameters.

Decisions in decision-theoretic approaches are made by
defining a hyperparameter exploration space and searching
for the best combinations available within the space. Grid
search (GS) and random search (RS) are two of these tech-
niques. GS examines all the hyperparameter values within a
specific  boundary  or  range  [39];  in  contrast,  RS  takes
certain bays of hyperparameter values at random [40]; thus,
it  is  more  economical  to  use  resources  in,  for  instance,
hyperparameter  tuning  than  GS.  Each  of  these  strategies
assesses  the  performance  of  all  the  tuning  parameter
settings  separately.

In  contrast,  unlike  GS  and  RS,  Bayesian  optimization
(BO)  avoids  wasting  evaluation  trials  by  using  selectively
tested hyperparameter values to inform the next selection
[41]. In this way, because the distribution of the objective
function  is  represented  using  surrogate  models  such  as
Gaussian processes (GP), random forests (RF), or the tree-
structured  parzen  estimator  (TPE)  [42],  BO  can  reach  its
optima  in  a  small  number  of  iteration  cycles.  Conditional
hyperparameters  such  as  kernel  type  and  penalty  para-
meter C in support vector machines are presented in BO-RF
and  BO-TPE  as  extensions.  However,  as  BO  works  itera-
tively with the view of going into unexplored territories and
making use of already explored spaces, incorporating paral-
lelization is not straightforward [43].

Concerning overfitting,  the optimization of  hyperpara-
meters is fundamental for achieving better accuracy in XGB
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models [44]. The outcomes of machine-learning models are
highly dependent on the choice of hyperparameters, parti-
cularly when the model is desired to perform optimally. In
the  past,  the  fine-tuning  of  hyperparameters  was  perfor-
med  through  a  trial-and-error  process,  which  involved  a
grid search, whereby a fixed number of specific values for
the parameters were tested. This research also focused on
the  tuning  of  the  XGB  model,  which  is  widely  applied  in
practice: grid search, random search, and Bayesian optimi-
zation. All methods are different in terms of the hyperpara-
meter  space sampling strategy and focus  on performance
vs. computational resource limits.

The grid search checks all the possible configurations of
the selected hyperparameters in a certain hyperparameter
space  or  grid.  In  the  case  of  XGB,  the  most  important
hyperparameters that are tuned are the number of boosting
rounds (or trees) and the learning rate. On the contrary, a
random search takes any combination of hyperparameters
to the specified limits, using less time and effort when there
are  many  parameters  to  optimize.  Probably  the  most
complicated method, Bayesian optimization, also searches
for hyperparameters, but it does this based on the results
obtained during previous evaluations and uses probabilistic
models for this purpose, thus looking for the hypotheses in
a more focused manner and doing so usually quicker than
by searching all the possibilities.

To enhance the tuning results and minimize bias, 5-fold
cross-validation (CV) was adopted. Five equal parts of the
dataset  were  obtained  using  this  approach,  four  of  which
were  used  to  train  the  model  and  one  to  validate  it.  This
process was repeated until the last fold was used as a test
set. This CV technique provides a better approximation of
the effectiveness of the trained model while minimizing the
chances  of  overfitting  the  model  and  allows  the  tuning
results to be applicable to new samples. For this reason, a
combination of  grid search,  random search,  and Bayesian
optimization,  along  with  a  5-fold  CV,  is  used  to  enable
thorough and effective tuning, leading to the best possible
XGB model being built.

4. DATA ACQUISITION AND PROCESSING
A total of 135 data entries were compiled from existing

experimental  research  focused  on  the  behavior  of  SRC
FSST  columns  under  elevated  temperature  conditions.
These entries encompass essential structural and material
parameters recorded across varying heating durations and
thermal exposures [45]. The key input parameters include
the  square  steel  tube  wall  thickness  (t)  and  area  (Ast),
section steel dimensions (depth (h), flange width (b), web
thickness (tw), flange thickness(tf), and area (Ass)), time of
exposure  to  heating  (T),  among  other  factors  such  as
concrete properties, compressive strength (fc), and area of
concrete (Ac). The output variable was the PALC (Pu).

To  avoid  inconsistency  and  scale  differences  between
various  features,  the  dataset  was  normalized  and  standa-
rdized  prior  to  model  training.  Min-max  normalization
(Linear  Normalization)  was  used  for  scaling  all  the  inde-
pendent variables between 0 and 1,  so that no parameter
overpowered the model by being on a larger scale. It serves
to preserve relative feature relationships for better learning

by tree-based models like XGB, which do not need normally
distributed input data.

Besides min-max normalization, z-score standardization
was  also  performed  in  order  to  examine  feature  distribu-
tions and identify possible outliers. The technique standa-
rdizes data in terms of having zero mean and unit variance,
making  sure  that  variations  among  features  are  properly
scaled.  The  z-score  examination  and  KDE  plot  again
checked  the  normalization  process  to  ensure  all  features
were  in  an  acceptable  range  and  that  no  severe  outliers
existed.

Although other methods like robust scaling and logari-
thmic transformations were considered, min-max normali-
zation  was  used  owing  to  its  ease,  interpretability,  and
performance  in  preserving  feature  distributions.  In  addi-
tion, z-score analysis fortified the data pre-processing pipe-
line  by  providing  a  check  on  feature  scaling  and  possible
outliers,  which  were  dealt  with  in  a  systematic  way.  The
synergistic effect of these methods made their contribution
towards enhanced model generalization and stability, which
facilitated  reliable  predictions  for  SRCFSST  column  load
capacity.

4.1. Data Quality Assurance
Ensuring  data  quality  is  crucial  for  developing  robust

machine-learning  models.  Therefore,  prior  to  model  trai-
ning, the dataset was examined for potential issues, such as
missing  values  and  outliers,  that  could  adversely  impact
predictive performance.

A  completeness  check  was  conducted  on  all  features,
confirming that no missing values were present. However,
as a precautionary step, standard mean and median impu-
tation  techniques  were  considered  for  handling  potential
missing entries in future datasets.

For testing the existence of outliers, z-score analysis and
Kernel  Density  Estimation  (KDE)  plotting  were  used.  The
filled  KDE  plot  (Fig.  4)  shows  the  input  parameter  distri-
bution with the red dashed lines indicating the ±3 Z-score
limit. The plot reveals that all the features are within accep-
table  limits,  thus  no  outliers  in  the  dataset.  This  indicates
that  the  dataset  is  well-balanced  and  lacks  extreme  ano-
malies that may skew the learning process.

Furthermore, Principal Component Analysis (PCA) was
used  to  strengthen  data  structure  by  eliminating  redun-
dancy and highlighting strong patterns. The pre-processing
operation ensured that the machine learning algorithms had
input  data  free  of  noise  and  in  a  structured  form,  hence
creating more accurate predictions and generalizability.

4.2. Statistical Analysis
Each entry in the dataset contains key geometric and

material strength parameters relevant to the performance
assessment  of  SRCFSST columns  under  elevated  tempe-
rature conditions. As shown in Table 1, the dataset exhi-
bits notable variability across different features. For ins-
tance,  the  thickness  of  the  steel  tube  (t)  varies  between
2.94 mm and 4.78 mm, with an average value of 3.79 mm.
The  compressive  strength  of  concrete  (fc)  ranges  from
16.43  MPa  to  29.30  MPa,  averaging  23.35  MPa.
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Fig. (4). KDE plot illustrating the distribution of input parameters.

Table 1. Description of the dataset.

Parameters Units Category Minimum Maximum Average Median Standard Deviation Kurtosis Skewness

t (mm) Input 2.94 4.78 3.79 3.66 0.76 -1.51 0.26
Ast (mm2) Input 2317 3733 2974.67 2874 584.61 -1.51 0.26
h (mm) Input 100 125 108.33 100 11.83 -1.51 0.72
b (mm) Input 68 125 97.67 100 23.42 -1.51 -0.15
tw (mm) Input 4.5 6.5 5.67 6 0.85 -1.51 -0.53
tf (mm) Input 7.6 9 8.2 8 0.59 -1.51 0.48
Ass (mm2) Input 1433 3031 2218 2190 655.11 -1.51 0.06
fc (MPa) Input 16.43 29.3 23.35 24.31 5.32 -1.51 -0.27
Ac (mm2) Input 33236 36250 34807.33 34834 878.04 -0.74 -0.1
T (min) Input 0 130 64 60 46.91 -1.38 0.06
Pu (kN) Output 1673 4097 2960.82 2919 537.17 -0.56 -0.07

The Pearson correlation heatmap (Fig. 5) reveals seve-
ral strong positive correlations among features, such as h,
b, tw, tf, and Ass, suggesting that these parameters tend to
increase together, potentially due to design relationships.
Moderate  positive  correlations  were  observed  between

PALC (Pu),  and  features  such  as  tf,  b,  and  Ass,  indicating
that  these  factors  may  significantly  influence  the  load
capacity. In contrast, Ac shows a moderate negative corre-
lation  with  several  features,  suggesting  an  inverse  rela-
tionship  possibly  linked  to  the  design  constraints.  Vari-
ables such as fc and T exhibited little correlation with the
others, implying minimal linear dependence. This heatmap
helps  in  identifying  influential  features  for  predicting  Pu

and highlights interdependent variables to be considered
in the model building.

The PALC (Pu) spans a wide range, from 1673 kN to 4097
kN,  with  a  mean  value  of  2960.82  kN,  indicating  the
inclusion of diverse structural configurations and loading
scenarios.
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Fig. (5). Correlation matrix of key parameters influencing PALC in SRCFSST columns.

The series of  plots in Fig.  (6)  provides a comprehen-
sive analysis of the relationships between the PALC (Pu) of
SRCFSST  columns  and  various  structural  and  material
parameters. These parameters include t, Ast, h, b, tw, tf, Ass,
fc, Ac, and T. The visualization in Fig. (6) utilizes hexagonal
binning plots, accompanied by histograms and correlation
coefficients,  to  elucidate  distinct  patterns  and  associ-
ations.  Notably,  certain  parameters  such  as  Ac  demon-
strate a strong positive correlation (reaching 0.72) with Pu,
suggesting  a  substantial  impact  on  PALC.  In  contrast,
other  factors  like  T  exhibit  weaker  or  even  negative
correlations  (-0.39),  underscoring  the  influence  of  time-
dependent effects on structural performance. Parameters
including  b,  tf,  and  Ass  show  moderate  correlations  of
approximately 0.5, indicating a secondary but significant
role  in  determining  Pu.  The  hexagonal  bins  effectively
capture data density and distribution, while the marginal

histograms  illustrate  the  frequency  distribution  of  each
variable. This approach offers a comprehensive visual re-
presentation  of  the  interplay  between  structural  para-
meters  and  PALC  in  SRCFSST  columns.

Fig.  (7)  illustrates  the  distribution  of  the  PALC  (Pu)
based on a set of parameters, in particular, Ac, T, Ast, h, b,
tf, tw, and fc. Each scatter plot followed its color for a diff-
erent  parameter  to  differentiate  its  impact  on  Pu.  The
distribution patterns indicate the bunching of values for a
few parameters within certain Pu value ranges, which may
indicate correlations. For example, higher values of Ac and
Ast commonly imply higher values of Pu, whereas T is spr-
ead across all Pu values. Such plots help explain visually,
at least intuitively, the relationship between the structural
and material parameters and PALC, and thus offer insight
into  optimized  design  specifications  in  structural  engi-
neering  applications.
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Fig. 6 contd.....
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Fig. (6). Correlation and distribution analysis of parameters affecting PALC of SRCFSST column.

Fig. 7 contd.....
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Fig. 7 contd.....
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Fig. (7). Scatter plots showing the relationship between Pu and input parameters.

Table 2. Statistical summary of each PC.

Parameters Minimum Maximum Average Standard Deviation Sample Variance Kurtosis Skewness

PC1 -3.295 3.629 0.000 2.513 6.317 -1.449 0.151

PC2 -2.006 2.228 0.000 1.544 2.385 -1.449 0.251

PC3 -1.871 1.696 0.000 1.004 1.007 -0.832 -0.166

PC4 -1.865 1.799 0.000 1.004 1.007 -0.782 -0.01

PC5 -0.856 0.488 0.000 0.604 0.365 -1.511 -0.698

PC6 -0.025 0.027 0.000 0.016 0.000 -0.739 0.136

PC7 -0.003 0.002 0.000 0.002 0.000 -1.511 -0.659

PC8 0.000 0.000 0.000 0.000 0.000 -1.208 0.596

PC9 0.000 0.000 0.000 0.000 0.000 -1.511 -0.639

PC10 0.000 0.000 0.000 0.000 0.000 -1.511 -0.634

PC11 0.000 0.000 0.000 0.000 0.000 -1.244 -0.552

4.3. Principal Component Analysis
In this study, Principal Component Analysis (PCA) was

utilized  to  address  multicollinearity  among input  features
and  to  reduce  the  dimensional  complexity  of  the  dataset.
This  approach  enhances  both  computational  performance
and the predictive capability of the machine learning model.
PCA  is  particularly  effective  in  scenarios  involving  nume-
rous  interrelated  variables,  as  is  the  case  with  the  struc-
tural  and  material  properties  of  SRCFSST  columns.  The
technique transforms the original correlated features into a
new set of orthogonal variables, known as principal compo-
nents  (PCs),  which  retain  the  majority  of  the  dataset’s
variability.  As  detailed in  Table  2,  PCA was applied to  11
variables,  and the resulting analysis showed that the first
five principal components captured nearly 100% of the total
variance  (Fig.  8).  This  allowed  the  dimensionality  of  the
input  space  to  be  reduced  to  five  principal  components
without significant loss of information, thereby streamlining
the  modeling  process.  The  statistical  measures  related  to
individual and cumulative variance confirm the suitability of

these components for training both the XGB and PCA-XGB
predictive models.

The significance of dimensionality reduction is further
emphasized by the graphical representation of the principal
components,  depicted  by  their  standard  deviation,  indivi-
dual variance contributions, and cumulative variance contri-
butions (Fig. 9).

4.4. Significance of integrating PCA & XGB
This research highlights the importance of PCA coupled

with  XGB  and  may  improve  the  predictive  accuracy  and
simultaneously accommodate significant computational effi-
ciency.  PCA  works  in  such  a  manner  that  it  reduces  the
number of dimensions of complex data by transforming cor-
related predictors into uncorrelated principal components
that incorporate the most important parts of variance in any
data.  This  further  lessens  the  problems  of  overfitting  in
related machine-learning mechanisms and lowers the com-
putational  burden  owing  to  the  omission  of  redundant
attributes.
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When  employed  alongside  XGB,  a  powerful  ensemble
learning technique recognized for its exceptional predictive
abilities, PCA offers a streamlined input dataset that allows
XGB to concentrate on the most critical data patterns. XGB
demonstrates proficiency in handling complex data relation-
ships through its boosting architecture, which progressively

enhances  the  model  accuracy  by  correcting  errors  from
prior iterations.  The whitened feature space of PCA helps
the  XGB  model  reach  high  accuracy  without  incurring  a
very  high  computational  expense,  which  tends  to  make  it
even  more  suitable  for  computationally  intensive  applica-
tions,  such  as  predicting  the  PALC  of  SRCFSST  columns
subjected to elevated temperature conditions.

Fig. (8). Variance contribution and cumulative explained variance of principal components.

Fig. 9 contd.....
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Fig. (9). Actual versus predicted Pu for different models.

In  this  sense,  the  PCA-XGB  methodology  is  crucial
because it addresses the high dimensionality and risk of mul-
ticollinearity  of  the  predictor  variables  related  to  material
characteristics and environmental influences. The hyperpa-
rameter optimization within this integrated model improves
the predictive precision and enhances the robustness of the
model,  offering  a  new  and  efficient  approach  for  the  esti-
mation  of  structural  behavior  subjected  to  thermal  stress.
This  approach  enables  a  good  understanding  of  the  SRC

FSST behavior under fire conditions and provides a scalable
and effective tool for real-world engineering applications.

4.5. Computational Analysis
This research focuses on the optimization and tuning

of model parameters to enhance predictive power and ro-
bustness through computational analysis. The data under-
go  min-max  normalization,  which  scales  the  variables
between 0 and 1, before partitioning into training and tes-
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ting sets in a ratio of 70:30. This approach ensures comp-
lete  model  training  with  a  subset  held  for  purposes  of
validation.  This  research  endeavors  to  explore  how  the
PCA-XGB model  is  able  to  predict  the  PALC (Pu)  of  SRC
FSST columns subjected to various elevated temperature
conditions,  along  with  the  utilization  of  three  distinct
methods  for  hyperparameter  tuning:  GS,  RS,  and  BO.

Optimizing  the  hyperparameters  of  the  XGB  model  is
crucial  for  improving  performance.  Table  3  outlines  the
optimal hyperparameters obtained for each tuning technique
applied to both the XGB and PCA-XGB models. For the XGB
model,  GS yielded optimal  values of  0.6,  200,  4,  0.05,  and
0.5 for  the subsample,  n_estimators,  max_depth,  learning_
rate,  and  colsample_bytree,  respectively.  RS  produced
values of  0.6,  350,  4,  0.107,  and 0.3,  while BO resulted in
0.787,  382,  4,  0.021,  and 0.628.  For  PCA-XGB models,  GS
yielded 0.8, 200, 6, 0.05, and 0.3; RS produced 0.72, 350, 6,
0.0358,  and  0.378;  and  BO  resulted  in  0.8692,  165,  9,
0.0392, and 0.7569. These fine-tuned parameters played a
significant role in mitigating overfitting, enhancing genera-
lization,  and  maximizing  the  learning  efficiency  of  the
models.

Upon completion of the tuning process, the effective-
ness  of  the  model  was  tested  using  a  full  array  of  stat-
istical  measures.  The  metrics  included  the  Pearson
Correlation  Coefficient  (R),  Coefficient  of  Determination
(R2),  Adjusted  R2,  Weighted  Mean  Absolute  Percentage
Error (WMAPE), Nash-Sutcliffe efficiency (NS), Root Mean
Square  Error  (RMSE),  Variance  Accounted  For  (VAF),
Ratio  of  Standard  Deviation  of  Observed  and  Predicted
Values  (RSR),  Normalized  Mean  Bias  Error  (NMBE),
Willmott's  Index  of  Agreement  (WI),  and  Limit  of  Model
Interpretation  (LMI).  This  wide-ranging  metric  provides
deep insight into the accuracy, stability, and dependability
of  such  models  in  explaining  the  complex  relationships
that exist  between the rows in a given dataset.  The eva-
luation  showed  that  the  best-adjusted  PCA-XGB  models,
especially  those  containing  complex-tuning  methods,
showed  higher  degrees  of  predictive  proficiency  and  ro-
bustness.  This  confirms  their  strong  suitability  for  eva-
luating the performance of SRCFSST columns subjected to
high-temperature conditions.

5. RESULT AND DISCUSSION
This part provides an in-depth comparison of the fore-

casting abilities of PCA-XGB models, each optimally fine-
tuned  with  various  hyperparameter  search  techniques.
Comparison is made here between Grid Search, Random

Search,  and  Bayesian  Optimization  based  on  how  well
these  perform  regarding  influencing  model  accuracy  as
well  as  model  generalization.  Principal  evaluation  para-
meters  like  the  coefficient  of  determination  (R2),  Root
Mean  Square  Error  (RMSE),  and  Mean  Absolute  Error
(MAE) are used to determine the best tuning strategy for
the estimation of PALC of SRCFSST columns under high-
temperature conditions. Visual aids like Taylor diagrams
and error distribution plots are also used to analyze model
performance  during  training,  validation,  and  testing  pe-
riods.  The  outcomes  highlight  the  pivotal  role  of  PCA in
input dimensionality reduction and the better performance
of Bayesian Optimization in enhancing predictive results
for justifying its usability as a solid machine learning plat-
form in structural fire engineering.

5.1. Model Performance and Evaluation
Fig.  (9)  shows  the  predictive  power  of  various  XGB

models,  where  different  optimization  methodologies  for
hyperparameters were used, namely, Random Forest, Grid
Search and Bayesian Optimization,  along with  the appli-
cation  and  non-application  of  PCA  to  the  dataset.  These
models  aimed  to  predict  the  PALC (Pu)  of  SRCFSST  col-
umns. The initial three graphs present the results of the
standalone XGB models (XGB-RS, XGB-GS, and XGB-BO),
while the subsequent three graphs demonstrate the out-
comes when PCA was implemented prior to model training
(PCA-XGB-RS, PCA-XGB-GS, PCA-XGB-BO).

Each graph depicts the predicted Pu plotted against the
actual Pu for both the training and test datasets. The solid
red line represents the ideal 1:1 correlation (Y = X), with
dashed  lines  at  Y  =  1.2X  and  Y  =  0.8X  serving  as  the
reference boundaries. The R2  values for the training and
testing sets were provided, indicating goodness of fit. The
integration  of  PCA  (shown  in  the  last  three  graphs)
resulted in enhanced model performance, particularly for
the  Bayesian  Optimization  model  (PCA-XGB-BO).  This
model  achieved  high  R2  values,  suggesting  that  PCA im-
proves  performance  by  reducing  dimensionality  and
multicollinearity.

The Bayesian Optimization technique has proven to be
more  effective  than  the  Random  and  Grid  Search  algo-
rithms  because  more  data  points  tend  to  cluster  closer
along the Y = X line, and the R2 values are higher. This is
especially  the  case  in  the  PCA-XGB-BO  model,  where  it
proved to be the most effective and accurate method for
that specific problem.

Table 3. Optimum hyperparameters obtained for different models.

Optimum Hyperparameters

Model XGB-GS XGB-RS XGB-BO PCA-XGB-GS PCA-XGB-RS PCA-XGB-BO

Subsample 0.6 0.6 0.787 0.8 0.72 0.8692
n_estimators 200 350 382 200 350 165
max_depth 4 4 4 6 6 9

learning_rate 0.05 0.107 0.021 0.05 0.0358 0.0392
colsample_bytree 0.5 0.3 0.628 0.3 0.378 0.7569
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Table 4. Statistical performance detail.

Model XGB-RS XGB-GS XGB-BO PCA-XGB-RS PCA-XGB-GS PCA-XGB-BO

Stage Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing
R 0.992 0.875 0.983 0.930 0.983 0.919 0.960 0.937 0.956 0.939 1.000 0.963
R2 0.985 0.756 0.966 0.864 0.966 0.844 0.921 0.878 0.913 0.881 0.999 0.928

Adj R2 0.984 0.736 0.965 0.846 0.965 0.824 0.919 0.863 0.911 0.866 0.999 0.918
WMAPE 0.017 0.055 0.027 0.043 0.027 0.047 0.039 0.046 0.031 0.046 0.005 0.037

NS 0.984 0.756 0.965 0.856 0.965 0.834 0.921 0.863 0.921 0.863 0.999 0.918
RMSE 0.067 0.246 0.100 0.189 0.100 0.203 0.151 0.185 0.135 0.185 0.020 0.142
VAF 98.445 76.624 96.517 86.206 96.517 84.222 92.127 87.727 92.010 87.566 99.865 92.069
RSR 0.125 0.494 0.187 0.379 0.187 0.408 0.281 0.371 0.281 0.370 0.037 0.286

NMBE 0.016 1.616 0.047 1.190 0.047 1.458 0.062 1.929 0.055 1.811 0.002 -0.760
WI 0.996 0.929 0.991 0.959 0.991 0.952 0.979 0.961 0.979 0.960 1.000 0.977
LMI 0.889 0.598 0.825 0.690 0.825 0.655 0.742 0.665 0.743 0.664 0.970 0.727

Table  4  summarizes  the  performance  evaluation  of
several  machine learning models using XGB tuned using
three  hyperparameter  optimization  techniques  (Random
Search,  Grid  Search,  and  Bayesian  Optimization)  with
their PCA-enhanced variants. The analysis employed vari-
ous metrics to assess model efficacy. The correlation Co-
efficient  (R)  and  Coefficient  of  Determination  (R2)  indi-
cated  exceptional  performance  across  all  models  during
training, with PCA-XGB-BO achieving near-perfect scores
(R=1.000,  R2=0.999).  This  trend  persisted  during  the
testing phase, where PCA-XGB-BO maintained the highest
R2 (0.928), indicating superior accuracy.

Error metrics such as Weighted Mean Absolute Percen-
tage Error (WMAPE) and Root Mean Square Error (RMSE)
further  corroborate  the  excellence  of  PCA-XGB-BO,  dis-
playing the lowest values for both training (WMAPE=0.005,
RMSE=0.020) and testing (WMAPE=0.037, RMSE=0.142).
Nash-Sutcliffe Efficiency (NS) and Variance Accounted For
(VAF)  metrics  reinforce  PCA-XGB-BO's  predictive  capa-
bilities,  with  high  scores  in  training  (NS=0.999,  VAF=
99.865), demonstrating its ability to explain the majority of
the  data  variance.  Residual  Standard  Error  (RSR)  and
Normalized Mean Bias Error (NMBE) exhibit minimal resi-
duals and bias for PCA-XGB-BO, particularly during training
(RSR=0.037, NMBE=0.002). Willmott's index (WI) and the
Limit  of  Model  Interpretation  (LMI)  underscore  PCA-XGB-
BO  reliability,  achieving  WI=1.000  in  training  and  high
interpretability, as indicated by LMI (0.970 in training). The
Bayesian-optimized  PCA-XGB  model  achieved  the  lowest
error values, reinforcing its effectiveness in predicting the
PALC of SRCFSST columns under high-temperature condi-
tions.  The  incorporation  of  PCA  contributed  to  feature  re-
duction  while  retaining  99%  of  the  variance,  thereby  re-
ducing  computational  complexity  and  preventing  over-
fitting. Bayesian Optimization further fine-tuned the hyper-
parameters,  leading to  enhanced generalization and stabi-
lity  across  different  datasets.  These  results  highlight  the
effectiveness of Bayesian Optimization in improving model
reliability,  making  the  PCA-XGB framework  the  most  opti-
mal predictive model for forecasting the PALC of SRCFSST
columns at high temperatures.

In conclusion, PCA-XGB-BO demonstrated superior per-
formance across  all  evaluation metrics.  This  suggests  that

combining PCA with Bayesian Optimization enhances model
accuracy,  mitigates dimensional  complexity,  and yields ro-
bust predictions suitable for complex datasets.

5.2. Statistical Validation of Model Performance
To further authenticate the ability of various machine

learning models to determine the PALC of SRCFSST col-
umns,  statistical  analyses  were  carried  out  to  compare
their performances. A paired t-test and Wilcoxon signed-
rank  test  were  applied  on  training  as  well  as  testing
performances  to  check  for  statistical  significance  of  the
difference observed. The t-test was applied assuming the
normality  of  the  data,  and  the  non-parametric  Wilcoxon
signed-rank  test  was  also  utilized  for  validation  against
any probable non-normality in the data. The results from
the statistics, as graphed in Fig. (10), show the p-values of
the tests across models.

The bar plot  in Fig.  (10)  visually represents the statis-
tical test results, where each model is plotted along the X-
axis, with its corresponding p-values from four different stat-
istical tests: paired t-test (training & testing) and Wilcoxon
signed-rank  test  (Training  &  Testing).  The  horizontal  red
dashed line represents the statistical significance threshold
(p  =  0.05),  indicating  whether  performance  differences
among  models  are  statistically  significant.  Bars  that  fall
below this threshold suggest significant differences, confir-
ming that the PCA-XGB-BO model consistently outperforms
other models, whereas bars above this threshold indicate no
statistically  significant  difference,  implying  performance
variations  could  be  attributed  to  randomness.

The  results  clearly  show  that  the  PCA-XGB-BO  model
achieved the lowest p-values, demonstrating statistically sig-
nificant improvements over other models across both para-
metric and non-parametric tests. The majority of p-values for
PCA-XGB-BO remain below the 0.05 significance threshold,
reinforcing  that  its  superior  predictive  performance is  not
due to  chance but  is  a  result  of  the Bayesian optimization
process  and  the  use  of  PCA  for  dimensionality  reduction.
These findings provide strong empirical evidence supporting
the robustness, reliability, and generalizability of the PCA-
XGB-BO  framework  in  predicting  the  ultimate  axial  load
capacity of SRCFSST columns under high-temperature con-
ditions.
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Fig. (10). Statistical test results for different models.

5.3. Graphical Analysis and Interpretation of Model
Performance

5.3.1. Taylor’s Diagram
Taylor diagrams visually assessed the predictive perfor-

mance of the hybrid models, as shown in Fig. (11).  These
diagrams  succinctly  compare  multiple  models  using  the
correlation coefficient, standard deviation, and root-mean-
square error (RMSE) metrics, each represented as a single
point. Models closer to the “Reference” point show higher
predictive accuracy, indicating optimal standard deviation,
correlation, and RMSE.

Fig. (11a) evaluates ‘XGB-RS’, ‘XGB-GS’, and ‘XGB-BO’
models  on training and testing datasets,  with proximity  to
the reference point indicating better prediction alignment.
Models  closer  to  this  point,  particularly  on  the  training
dataset, achieved higher correlation and ideal standard devi-
ation ratios, suggesting strong predictive accuracy of `XGB`
models, especially during training.

Fig.  (11b)  reviews  ‘PCA-XGB-RS’,  ‘PCA-XGB-GS’,  and
‘PCA-XGB-BO’  models,  integrating  principal  component
analysis (PCA) with XGB models to reduce data dimension-
ality and enhance generalization by focusing on significant
features. The diagram shows the PCA-XGB models closer to
the  reference  point,  especially  in  the  training  datasets,
indicating improved predictive accuracy due to PCA. These
models  exhibit  high  correlation  coefficients  and  standard
deviation ratios close to the actual values, demonstrating the
enhanced performance of the PCA-XGB integration.

The Taylor diagrams in Fig. (11) confirm the efficacy of
the `XGB` and `PCA-XGB` models in predicting target vari-
ables. Models near the reference point, particularly during

training, showed a strong fit to actual data with high cor-
relations and favorable standard deviation ratios. This eva-
luation underscores the potential of the PCA-XGB model for
reliable  predictions,  making  it  a  robust  choice  for  appli-
cations requiring high accuracy.

5.3.2. Error Diagrams
Fig. (12) displays percentage error distributions over the

training, cross-validation, and testing data for some hybrid
models,  namely  ‘XGB-RS’,  ‘PCA-XGB-RS’,  ‘XGB-GS’,  ‘PCA-
XGB-GS’, ‘XGB-BO’, and ‘PCA-XGB-BO’. Each individual sub-
plot is a depiction of the error trend by a particular confi-
guration of any model that clearly assists in understanding
the  gaps  between  predicted  values  and  actual  outcomes
available  as  a  percentage  error.

The error for most models stays close to zero during
the training and cross-validation phases, as shown to the
left of the dashed vertical line. This means that the fit was
fairly accurate and consistent when predicting the training
data.  The  results  from  the  testing  phase,  shown  to  the
right  of  the dashed line,  show more dramatic  error fluc-
tuations in some models, which may indicate overfitting or
a reduced ability to generalize to new data. It  should be
noted that PCA-based models, such as ‘PCA-XGB-RS’ and
‘PCA-XGB-GS,’ generally produce more stable error patt-
erns  in  the  test  step.  This  outcome signifies  that  dimen-
sionality reduction via PCA improves the model's stability
and  concentrates  on  important  attributes  at  the  cost  of
extraneous noise. The plots in Fig. (12) illustrate how PCA
is  related  to  a  possible  enhancement  of  consistency  in
prediction as well as reducing large variations in errors,
especially in the test step.
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Fig. (11). Taylor diagrams comparing predictive performance of XGB and PCA-XGB hybrid models on (a) training and (b) testing datasets.

(A) 

(B)
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Fig. 12 contd.....
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Fig. (12). Error plots for XGB and PCA-XGB hybrid models.
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SUMMARY AND FUTURE SCOPE

CONCLUSION
This  research  validates  the  effectiveness  of  advanced

machine learning techniques, particularly the combination of
Extreme Gradient Boosting (XGB) and Principal Component
Analysis (PCA), to forecast the PALC of SRCFSST columns
under  high-temperature  conditions.  This  study  employed
PCA for dimensionality reduction and utilized three hyper-
parameter  optimization  methods—grid  search,  random
search,  and Bayesian optimization—to create refined PCA-
XGB models. To ensure model generalizability and to miti-
gate  overfitting,  a  5-fold  cross-validation  strategy  was
implemented.

The PCA-XGB model optimized through Bayesian tech-
niques  demonstrated  superior  predictive  performance,
achieving an R2 value of 0.93 on the test dataset, surpas-
sing  the  grid  search  (0.89)  and  random  search  (0.91)
optimized  models.  Furthermore,  the  Bayesian-optimized
model exhibited the most favorable error metrics, with a
Mean  Absolute  Error  (MAE)  of  2.3%  and  a  Root  Mean
Square Error (RMSE) of 3.5%, underscoring its accuracy
and  reliability  in  predicting  the  load-bearing  capacity
under  elevated  temperatures.

The findings of this study are based on a dataset of 135
samples  and  are,  therefore,  most  applicable  to  similar
structural configurations and material conditions. The study
concludes  that  the  PCA-XGB  model  with  Bayesian  tuning
offers  an  efficient  and  precise  method  for  estimating  the
SRCFSST column performance in fire scenarios. While the
proposed  model  shows  promise,  its  broader  applicability
should be further validated through extended datasets and
experimental comparisons.

This  approach  presents  significant  advantages  over
conventional  experimental  techniques,  such  as  reduced
time and expenses while maintaining high predictive accu-
racy.  However,  it  should  be  viewed as  a  complementary
tool rather than a complete replacement for experimental
testing. The results emphasize the potential of combining
machine learning, hyperparameter optimization, and cross
-validation as valuable tools in structural fire engineering.
The proposed framework may assist in early-stage design
evaluations  and  performance  assessments,  subject  to
further  validation.

FUTURE DIRECTIONS
While  the  proposed  model  has  demonstrated  high  pre-

dictive accuracy and robustness, several areas remain open
for  further  research.  Future  studies  can  explore  the  inte-
gration of physics-informed machine learning, incorporating
domain-specific  knowledge  and  physical  constraints  to
enhance model interpretability and reliability. Extending the
developed  framework  to  predict  the  behavior  of  other  str-
uctural elements, such as beams, slabs, and bridge compo-
nents under fire conditions, would further broaden its app-
licability.  Additionally,  evaluating  model  generalization
across different fire scenarios, including variations in expo-
sure  durations,  loading  conditions,  and  material  compo-
sitions,  can improve its  practical  implementation.  Incorpo-
rating  uncertainty  quantification  techniques  into  the  pre-

dictive  framework  would  enable  risk-informed  decision-
making by assessing confidence intervals in model outputs.
Moreover,  the  exploration  of  hybrid  deep  learning  app-
roaches,  such as combining convolutional  neural  networks
(CNNs)  or  transformer-based  models  with  XGB,  could  en-
hance feature extraction and predictive power. Experimental
validation  through  large-scale  fire  testing  of  SRCFSST
columns would provide empirical verification of the model's
effectiveness,  refining  hyperparameter  optimization  stra-
tegies.  Finally,  the  adoption  of  explainable  AI  (XAI)  tech-
niques, such as SHAP (Shapley Additive Explanations) and
LIME  (Local  Interpretable  Model-Agnostic  Explanations),
would  improve  the  transparency  and  interpretability  of
machine learning predictions for engineering applications.
These  directions  will  contribute  to  advancing  the  use  of
artificial intelligence in structural fire engineering, further
enhancing  predictive  capabilities  and  ensuring  reliable,
data-driven  decision-making  in  fire  safety  assessment  and
design.

LIMITATIONS OF THE STUDY
While  the  proposed  PCA-XGB  framework  has  demon-

strated  strong  predictive  performance,  certain  limitations
must  be  acknowledged  to  contextualize  the  findings  and
guide future improvements. First, the study relies on a rela-
tively limited dataset of 135 samples, which, while diverse,
may not fully capture the variability in geometric, material,
and thermal properties encountered in real-world structural
systems. This constraint may introduce bias in generalizing
the  model’s  performance  to  SRCFSST  columns  with  subs-
tantially different configurations or fire exposure histories.

Second, the model’s training and validation were based
on  previously  published  experimental  data.  Any  inconsis-
tencies or limitations inherent in the source datasets—such
as differences in testing protocols, measurement errors, or
material  inconsistencies—may  influence  the  model’s  accu-
racy and reliability. Moreover, while PCA enhances compu-
tational efficiency and reduces multicollinearity, it may also
lead  to  a  loss  of  physical  interpretability  of  individual
features, which can be a limitation in engineering contexts
requiring explainable decision-making.

Third, the model focuses exclusively on axial load capa-
city  under  elevated  temperature  conditions  and  does  not
account  for  complex  multi-axial  stress  states,  long-term
degradation  effects,  or  dynamic  loading  scenarios  such  as
seismic  or  impact  forces.  This  restricts  the  scope  of  the
model to static fire-exposure conditions and may not reflect
the true behavior of columns subjected to combined actions.

Finally, although Bayesian Optimization proved effective
in hyperparameter tuning, the performance may vary across
different optimization spaces or when applied to alternative
machine learning algorithms. The absence of real-time or in-
situ data validation also presents a limitation in confirming
model  applicability  under  practical  operational  environ-
ments.

Recognizing  these  limitations  not  only  improves  the
transparency of the study but also underscores the need for
expanded datasets, comprehensive experimental validation,
and integration of domain-specific knowledge to enhance the
model's robustness and practical relevance.



Comparative Analysis of Hyperparameter Optimization Techniques for PCA–XGBoost Models 23

AUTHORS’ CONTRIBUTIONS
The authors confirm contribution to the paper as follows:

M.G.:  Responsible  for  the  conceptualization  of  the  study,
writing  the  initial  draft,  compiling  the  data,  conducting
analysis using machine learning models, and compiling the
results,  discussion,  and  conclusion;  S.P.:  Contributed  by
reviewing  and  revising  the  manuscript  and  providing  a
critical  evaluation  of  the  work.  All  authors  reviewed  the
results  and  approved  the  final  version  of  the  manuscript.

LIST OF ABBREVIATIONS

SRCFSST = Steel-Reinforced Concrete-Filled
Square Steel Tubular

CFST = Concrete-Filled Steel Tubular
PALC = Peak Axial Load Capacity
PCA = Principal Component Analysis
XGBoost
(XGB)

= Extreme Gradient Boosting

GS = Grid Search
RS = Random Search
BO = Bayesian Optimization
CV = Cross-Validation
MAE = Mean Absolute Error
RMSE = Root Mean Square Error
WMAPE = Weighted Mean Absolute Percentage

Error
NS = Nash–Sutcliffe Efficiency
VAF = Variance Accounted For
RSR = Ratio of Standard Deviation of

Observed and Predicted Values
NMBE = Normalized Mean Bias Error
WI = Willmott’s Index of Agreement
LMI = Limit of Model Interpretation
SHAP = SHapley Additive exPlanations
LIME = Local Interpretable Model-Agnostic

Explanations
ANN = Artificial Neural Network
SVM = Support Vector Machine
CNN = Convolutional Neural Network
KDE = Kernel Density Estimation
PC = Principal Component

CONSENT FOR PUBLICATION
Not applicable.

AVAILABILITY OF DATA AND MATERIALS
The  data  supporting  the  findings  of  the  article  is

available  in  the  Zenodo  repository  at  https://zenodo.
org/records/15727352,  reference  number  15727352.

FUNDING
None.

CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or

otherwise.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES
A.  Narang,  R.  Kumar,  and  A.  Dhiman,  "Machine  learning[1]
applications to predict the axial compression capacity of concrete
filled  steel  tubular  columns:  a  systematic  review",  Multidiscip.
Model. Mater. Struct., vol. 19, no. 2, pp. 197-225, 2023.
[http://dx.doi.org/10.1108/MMMS-09-2022-0195]
A.A. Shah, and Y. Ribakov, "Recent trends in steel fibered high-[2]
strength concrete", Mater. Des., vol. 32, no. 8-9, pp. 4122-4151,
2011.
[http://dx.doi.org/10.1016/j.matdes.2011.03.030]
M. Rabi, R. Shamass, and K.A. Cashell, "Structural performance of[3]
stainless steel reinforced concrete members: A review", Constr.
Build. Mater., vol. 325, p. 126673, 2022.
[http://dx.doi.org/10.1016/j.conbuildmat.2022.126673]
H.  Singh,  and  A.K.  Tiwary,  "Comparative  analysis  of  high-rise[4]
structure  with  diagrid  lateral  Load-Resisting  system  with
composite members and base isolation", In: Recent Developments
in  Geotechnics  and  Structural  Engineering,  Reseach  gate:
Germany,  2023,  pp.  177-190.
E.  AL-Wsabi,  and  N.  Falah,  "Behavior  of  Concrete-Filled  Steel[5]
Tube  Columns  Under  Fire",  J.  Sci.  Technol.,  vol.  20,  no.  2,  pp.
1-21, 2015.
[http://dx.doi.org/10.20428/jst.v20i2.936]
Y.H. Wang, W. Zeng, P. Ayough, W. Ren, W. Wang, L. Loganathan,[6]
and  S.P.  Yap,  "Axial  compression  performance  of  rubberized
concrete-filled  steel  tubular  stub  columns  after  fire  exposure:
Experimental investigation and calculation models", Constr. Build.
Mater., vol. 438, p. 137129, 2024.
[http://dx.doi.org/10.1016/j.conbuildmat.2024.137129]
S. Li, L.H. Han, F.C. Wang, and C.C. Hou, "Seismic behavior of[7]
fire-exposed concrete-filled steel tubular (CFST) columns", Eng.
Struct., vol. 224, p. 111085, 2020.
[http://dx.doi.org/10.1016/j.engstruct.2020.111085]
D. Yang, F. Liu, S.S. Huang, and H. Yang, "Structural fire safety[8]
design  of  square  and  rectangular  tubed-reinforced-concrete
columns",  Structures,  vol.  29,  pp.  1286-1321,  2021.
[http://dx.doi.org/10.1016/j.istruc.2020.12.014]
J.M. Franssen, and V. Kodur, "Residual load bearing capacity of[9]
structures exposed to fire", In: A Structural Engineering Odyssey,
2001.
[http://dx.doi.org/10.1061/40558(2001)89]
M.  Luo,  X.  Sun,  and  S.  Li,  "A  Historical  Review  of  Fire[10]
Engineering Practice and Advances in China", Fire Technol., vol.
60, no. 2, pp. 711-755, 2024.
[http://dx.doi.org/10.1007/s10694-022-01300-8]
A. Tretyakov, I. Tkalenko, and F. Wald, "Fire response model of[11]
the  steel  fibre  reinforced  concrete  filled  tubular  column",  J.
Construct.  Steel  Res.,  vol.  186,  p.  106884,  2021.
[http://dx.doi.org/10.1016/j.jcsr.2021.106884]
Z.  Haydera,  "Composite  columns  subjected  to  fire  and  static[12]
loading,  review  paper",  Muthanna  Journal  of  Engineering  and
Technology, vol. 12, no. 1, 2024.
[http://dx.doi.org/10.52113/3/eng/mjet/2024-12-01/86-95]
K.  Huebner,  "The finite  element  method for  engineers",  Choice[13]
(Middletown), vol. 32, no. 10, p. 32-5680, 1995.
[http://dx.doi.org/10.5860/CHOICE.32-5680]
A.V. Shymchenko, S. Salkutsan, B. Tepeщeнкo, Y. Ryabov, and A.[14]

https://zenodo.org/records/15727352
https://zenodo.org/records/15727352
http://dx.doi.org/10.1108/MMMS-09-2022-0195
http://dx.doi.org/10.1016/j.matdes.2011.03.030
http://dx.doi.org/10.1016/j.conbuildmat.2022.126673
http://dx.doi.org/10.20428/jst.v20i2.936
http://dx.doi.org/10.1016/j.conbuildmat.2024.137129
http://dx.doi.org/10.1016/j.engstruct.2020.111085
http://dx.doi.org/10.1016/j.istruc.2020.12.014
http://dx.doi.org/10.1061/40558(2001)89
http://dx.doi.org/10.1007/s10694-022-01300-8
http://dx.doi.org/10.1016/j.jcsr.2021.106884
http://dx.doi.org/10.52113/3/eng/mjet/2024-12-01/86-95
http://dx.doi.org/10.5860/CHOICE.32-5680


24   The Open Construction & Building Technology Journal, 2025, Vol. 19 Gupta and Prakash

Borovkov, "Review of the computational approaches to advanced
materials  simulation  in  accordance  with  modern  advanced
manufacturing  trends",
[http://dx.doi.org/10.18720/mpm.3232017_14]
S.Y.  Song,  Y.T.  Guo,  J.S.  Fan,  and  A.Y.  Elghazouli,  "Shear[15]
contribution  of  flange  dowel  action  in  steel–concrete–steel
composite structures", Thin-walled Struct.,  vol.  169, p. 108354,
2021.
[http://dx.doi.org/10.1016/j.tws.2021.108354]
A.Y.  Elghazouli,  A.  Mujdeci,  D.V.  Bompa,  and  Y.T.  Guo,[16]
"Experimental cyclic response of rubberised concrete-filled steel
tubes", J. Construct. Steel Res., vol. 199, p. 107622, 2022.
[http://dx.doi.org/10.1016/j.jcsr.2022.107622]
A.  Mujdeci,  Y.T.  Guo,  D.V.  Bompa,  and  A.Y.  Elghazouli,[17]
"Performance  of  circular  steel  tubes  infilled  with  rubberised
concrete  under  cyclic  loads",  Eng.  Struct.,  vol.  302,  p.  117327,
2024.
[http://dx.doi.org/10.1016/j.engstruct.2023.117327]
X. Nie, L. Duan, M. Tao, and Y. Guo, "Experimental investigation[18]
on  the  behavior  of  the  steel–concrete  composite  frames  with
uplift-restricted  and  slip-permitted  screw-type  (URSP-S)
connectors",  Eng.  Struct.,  vol.  254,  p.  113868,  2022.
[http://dx.doi.org/10.1016/j.engstruct.2022.113868]
P.G. Asteris, "A Novel Heuristic Algorithm for the Modeling and[19]
Risk  Assessment  of  the  COVID-19  Pandemic  Phenomenon",
Comput. Model. Eng. Sci., vol. 125, no. 2, pp. 815-828, 2020.
[http://dx.doi.org/10.32604/cmes.2020.013280]
E.  Gavriilaki,  P.G.  Asteris,  T.  Touloumenidou,  E.E.  Koravou,  M.[20]
Koutra, P.G. Papayanni, V. Karali, A. Papalexandri, C. Varelas, F.
Chatzopoulou, M. Chatzidimitriou, D. Chatzidimitriou, A. Veleni,
S. Grigoriadis, E. Rapti, D. Chloros, I. Kioumis, E. Kaimakamis, M.
Bitzani, D. Boumpas, A. Tsantes, D. Sotiropoulos, I. Sakellari, I.G.
Kalantzis,  S.T.  Parastatidis,  M.  Koopialipoor,  L.  Cavaleri,  D.J.
Armaghani,  A.  Papadopoulou,  R.A.  Brodsky,  S.  Kokoris,  and  A.
Anagnostopoulos, "Genetic justification of severe COVID-19 using
a rigorous algorithm", Clin. Immunol., vol. 226, no. 27, p. 108726,
2021.
[http://dx.doi.org/10.1016/j.clim.2021.108726] [PMID: 33845193]
P.G.  Asteris,  E.  Gavriilaki,  T.  Touloumenidou,  E.E.  Koravou,  M.[21]
Koutra, P.G. Papayanni, A. Pouleres, V. Karali, M.E. Lemonis, A.
Mamou,  A.D.  Skentou,  A.  Papalexandri,  C.  Varelas,  F.
Chatzopoulou, M. Chatzidimitriou, D. Chatzidimitriou, A. Veleni,
E. Rapti, I. Kioumis, E. Kaimakamis, M. Bitzani, D. Boumpas, A.
Tsantes,  D.  Sotiropoulos,  A.  Papadopoulou,  I.G.  Kalantzis,  L.A.
Vallianatou,  D.J.  Armaghani,  L.  Cavaleri,  A.H.  Gandomi,  M.
Hajihassani, M. Hasanipanah, M. Koopialipoor, P.B. Lourenço, P.
Samui, J. Zhou, I. Sakellari, S. Valsami, M. Politou, S. Kokoris, and
A.  Anagnostopoulos,  "Genetic  prediction  of  ICU  hospitalization
and  mortality  in  COVID‐19  patients  using  artificial  neural
networks", J. Cell. Mol. Med., vol. 26, no. 5, pp. 1445-1455, 2022.
[http://dx.doi.org/10.1111/jcmm.17098] [PMID: 35064759]
Q.  Ren,  M.  Li,  M.  Zhang,  Y.  Shen,  and  W.  Si,  "Prediction  of[22]
Ultimate Axial Capacity of Square Concrete-Filled Steel Tubular
Short Columns Using a Hybrid Intelligent Algorithm", Appl. Sci.
(Basel), vol. 9, no. 14, p. 2802, 2019.
[http://dx.doi.org/10.3390/app9142802]
N.T. Ngo, H.A. Le, and T-P-T. Pham, "Integration of support vector[23]
regression and grey wolf optimization for estimating the ultimate
bearing  capacity  in  concrete-filled  steel  tube  columns",  Neural
Comput. Appl., vol. 33, no. 14, pp. 8525-8542, 2021.
[http://dx.doi.org/10.1007/s00521-020-05605-z]
M.  Gupta,  S.  Prakash,  and  S.  Ghani,  "Enhancing  predictive[24]
accuracy: a comprehensive study of optimized machine learning
models  for  ultimate load-carrying capacity  prediction in  SCFST
columns", Asian Journal of Civil  Engineering, vol. 25, no. 4, pp.
3081-3098, 2024.
[http://dx.doi.org/10.1007/s42107-023-00964-z]
M.  Gupta,  S.  Prakash,  and  S.  Ghani,  "An  interactive  ensemble[25]
learning approach for predicting ultimate axial load capacity in
concrete-filled steel  tube column",  Model.  Earth Syst.  Environ.,

vol. 11, no. 3, p. 185, 2025.
[http://dx.doi.org/10.1007/s40808-025-02348-5]
B. Koçak, "Key concepts, common pitfalls, and best practices in[26]
artificial intelligence and machine learning: focus on radiomics",
Diagn. Interv. Radiol., vol. 28, no. 5, pp. 450-462, 2022.
[http://dx.doi.org/10.5152/dir.2022.211297] [PMID: 36218149]
M. Gupta, S. Prakash, S. Ghani, P. Paramasivam, and A.G. Ayanie,[27]
"Integrating  PCA  and  XGBoost  for  predicting  UACLC  of  steel-
reinforced  concrete-filled  square  steel  tubular  columns  at
elevated temperatures", Case Studies in Construction Materials,
vol. 22, no. Feb, p. e04456, 2025.
[http://dx.doi.org/10.1016/j.cscm.2025.e04456]
C-X. Lv, S-Y. An, W. Wu, and B-J. Qiao, "Time Series Analysis of[28]
Hemorrhagic Fever with Renal Syndrome in Mainland China by
using XGBoost Forecasting Model", research square, .
[http://dx.doi.org/10.21203/rs.3.rs-107730/v1]
Z.  Fang,  S.  Yang,  C.  Lv,  S.  An,  and  W.  Wu,  "Application  of  a[29]
article-driven XGBoost model for the prediction of COVID-19 in
the  USA:  a  time-series  study",  BMJ  Open,  vol.  12,  no.  7,  p.
e056685,  2022.
[http://dx.doi.org/10.1136/bmjopen-2021-056685]  [PMID:
35777884]
W.  Li,  Y.  Yin,  X.  Quan,  and  H.  Zhang,  "Gene  Expression  Value[30]
Prediction Based on XGBoost Algorithm", Front. Genet., vol. 10,
no. 12, p. 1077, 2019.
[http://dx.doi.org/10.3389/fgene.2019.01077] [PMID: 31781160]
J.  Luo,  Z.  Zhang,  Y.  Fu,  and  F.  Rao,  "Time  series  prediction  of[31]
COVID-19  transmission  in  America  using  LSTM  and  XGBoost
algorithms", Results Phys., vol. 27, no. 3, p. 104462, 2021.
[http://dx.doi.org/10.1016/j.rinp.2021.104462] [PMID: 34178594]
M.  S.  Rahman,  A.  H.  Chowdhury,  and  M.  Amrin,  "Accuracy[32]
comparison  of  ARIMA  and  XGBoost  forecasting  models  in
predicting the incidence of COVID-19 in Bangladesh", PLOS Glob
Public Health, vol. 2, no. 5, p. e0000495, 2022.
[http://dx.doi.org/10.1371/journal.pgph.0000495]  [PMID:
36962227]
M. Noorunnahar, A.H. Chowdhury, and F.A. Mila, "A tree based[33]
eXtreme Gradient Boosting (XGBoost) machine learning model to
forecast  the  annual  rice  production  in  Bangladesh",  PLoS  One,
vol. 18, no. 3, p. e0283452, 2023.
[http://dx.doi.org/10.1371/journal.pone.0283452]  [PMID:
36972270]
R. Sibindi, R.W. Mwangi, and A.G. Waititu, "A boosting ensemble[34]
learning  based  hybrid  light  gradient  boosting  machine  and
extreme  gradient  boosting  model  for  predicting  house  prices",
Eng. Rep., vol. 5, no. 4, p. e12599, 2023.
[http://dx.doi.org/10.1002/eng2.12599]
H. Hotelling, "Analysis of a complex of statistical variables into[35]
principal  components",  J.  Educ.  Psychol.,  vol.  24,  no.  7,  pp.
498-520,  1933.
[http://dx.doi.org/10.1037/h0070888]
S. Ghani, S. Kumari, and A. Bardhan, "A novel liquefaction study[36]
for  fine-grained  soil  using  PCA-based  hybrid  soft  computing
models",  Sadhana,  vol.  46,  no.  3,  p.  113,  2021.
[http://dx.doi.org/10.1007/s12046-021-01640-1]
G.  Luo,  "A  review  of  automatic  selection  methods  for  machine[37]
learning algorithms and hyper-parameter values", Netw. Model.
Anal. Health Inform. Bioinform., vol. 5, no. 1, p. 18, 2016.
[http://dx.doi.org/10.1007/s13721-016-0125-6]
D.  Maclaurin,  D.  Duvenaud,  and  R.  Adams,  "Gradient-based[38]
Hyperparameter  Optimization  through  Reversible  Learning",
arXiv:1502.03492,  pp.  1-9,  2015.
[http://dx.doi.org/10.48550/arXiv.1502.03492]
J.  Bergstra,  B.  Komer,  C.  Eliasmith,  D.  Yamins,  and  D.D.  Cox,[39]
"Hyperopt:  a  Python  library  for  model  selection  and
hyperparameter optimization", Comput. Sci. Discov., vol. 8, no. 1,
p. 014008, 2015.
[http://dx.doi.org/10.1088/1749-4699/8/1/014008]
B.  Bergstrajames,  and  B.  Bengioyoshua,  "Random  search  for[40]
hyper-parameter optimization", J. Mach. Learn. Res., vol. 13, no.

http://dx.doi.org/10.18720/mpm.3232017_14
http://dx.doi.org/10.1016/j.tws.2021.108354
http://dx.doi.org/10.1016/j.jcsr.2022.107622
http://dx.doi.org/10.1016/j.engstruct.2023.117327
http://dx.doi.org/10.1016/j.engstruct.2022.113868
http://dx.doi.org/10.32604/cmes.2020.013280
http://dx.doi.org/10.1016/j.clim.2021.108726
http://www.ncbi.nlm.nih.gov/pubmed/33845193
http://dx.doi.org/10.1111/jcmm.17098
http://www.ncbi.nlm.nih.gov/pubmed/35064759
http://dx.doi.org/10.3390/app9142802
http://dx.doi.org/10.1007/s00521-020-05605-z
http://dx.doi.org/10.1007/s42107-023-00964-z
http://dx.doi.org/10.1007/s40808-025-02348-5
http://dx.doi.org/10.5152/dir.2022.211297
http://www.ncbi.nlm.nih.gov/pubmed/36218149
http://dx.doi.org/10.1016/j.cscm.2025.e04456
http://dx.doi.org/10.21203/rs.3.rs-107730/v1
http://dx.doi.org/10.1136/bmjopen-2021-056685
http://www.ncbi.nlm.nih.gov/pubmed/35777884
http://dx.doi.org/10.3389/fgene.2019.01077
http://www.ncbi.nlm.nih.gov/pubmed/31781160
http://dx.doi.org/10.1016/j.rinp.2021.104462
http://www.ncbi.nlm.nih.gov/pubmed/34178594
http://dx.doi.org/10.1371/journal.pgph.0000495
http://www.ncbi.nlm.nih.gov/pubmed/36962227
http://dx.doi.org/10.1371/journal.pone.0283452
http://www.ncbi.nlm.nih.gov/pubmed/36972270
http://dx.doi.org/10.1002/eng2.12599
http://dx.doi.org/10.1037/h0070888
http://dx.doi.org/10.1007/s12046-021-01640-1
http://dx.doi.org/10.1007/s13721-016-0125-6
http://dx.doi.org/10.48550/arXiv.1502.03492
http://dx.doi.org/10.1088/1749-4699/8/1/014008


Comparative Analysis of Hyperparameter Optimization Techniques for PCA–XGBoost Models 25

1, 2012.
[http://dx.doi.org/10.5555/2188385.2188395]
K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H.[41]
Hoos, and K. Leyton-Brown, "Towards an empirical foundation for
assessing bayesian optimization of hyperparameters",
K.  Eggensperger,  F.  Hutter,  H.  Hoos,  and  K.  Leyton-Brown,[42]
"Efficient  Benchmarking  of  Hyperparameter  Optimizers  via
Surrogates", Proc. Conf. AAAI Artif. Intell., vol. 29, no. 1, 2015.
[http://dx.doi.org/10.1609/aaai.v29i1.9375]
A.  Shami,  and  L.  Yang,  "On  Hyperparameter  Optimization  of[43]
Machine Learning Algorithms: Theory and Practice",

N.  M.  Al-Abdaly,  H.  Imran,  S.  R.  Al-Taai,  and  M.  Ibrahim,[44]
"Development  of  prediction  model  of  steel  fiber-reinforced
concrete  compressive  strength  using  random  forest  algorithm
combined  with  hyperparameter  tuning  and  k-fold  cross-
validation", Eastern-European Journal of Enterprise Technologies,
vol. 5, no. 113, pp. 59-65, 2021.
[http://dx.doi.org/10.15587/1729-4061.2021.242986]
X. Yang, C. Tang, Y. Chen, and T.Y. Qiao, "Compressive behavior[45]
of  steel-reinforced  concrete-filled  square  steel  tubular  stub
columns after  exposure  to  elevated  temperature",  Eng.  Struct.,
vol. 204, p. 110048, 2020.
[http://dx.doi.org/10.1016/j.engstruct.2019.110048]

http://dx.doi.org/10.5555/2188385.2188395
http://dx.doi.org/10.1609/aaai.v29i1.9375
http://dx.doi.org/10.15587/1729-4061.2021.242986
http://dx.doi.org/10.1016/j.engstruct.2019.110048

	[1. INTRODUCTION]
	1. INTRODUCTION
	2. METHODOLOGY
	3. COMPUTATIONAL METHOD AND PRINCIPAL COMPONENT ANALYSIS
	3.1. Extreme Gradient Boosting
	3.2. Principal Component Analysis
	3.2.1. Standardization
	3.2.2. Covariance Matrix Calculation
	3.2.3. Eigenvalue Decomposition
	3.2.4. Principal Component Selection
	3.2.5. Transformation to New Feature Space

	3.3. Hyperparameter Tuning, Optimization and 5-Fold Cross-validation

	4. DATA ACQUISITION AND PROCESSING
	4.1. Data Quality Assurance
	4.2. Statistical Analysis
	4.3. Principal Component Analysis
	4.4. Significance of integrating PCA & XGB
	4.5. Computational Analysis

	5. RESULT AND DISCUSSION
	5.1. Model Performance and Evaluation
	5.2. Statistical Validation of Model Performance
	5.3. Graphical Analysis and Interpretation of Model Performance
	5.3.1. Taylor’s Diagram
	5.3.2. Error Diagrams


	SUMMARY AND FUTURE SCOPE
	CONCLUSION
	FUTURE DIRECTIONS
	LIMITATIONS OF THE STUDY

	AUTHORS’ CONTRIBUTIONS
	LIST OF ABBREVIATIONS
	CONSENT FOR PUBLICATION
	AVAILABILITY OF DATA AND MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES




