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Abstract:

Background:

Changes in the skyline of cities all over the world show that tall buildings are an interesting solution to accommodating growth more sustainably in
today’s urban areas. Stability against lateral loading is the main issue for designing high-rise buildings. Diagrid systems or grid structures are one
of these stable systems. For a long time, the only structural pattern used in this system was the triangular modulus (diagrid).

Methods:

In the present study, a new pattern for grid structures was introduced, and its performance was compared with the two previous common patterns
(triangular and hexagonal). The new pattern is called the Isometric Cube grid, thanks to its particular shape. The design process was performed
based on a simple stiffness criterion presented in the previous research. In order to calculate the stiffness of the structure for the new pattern, two
types of existing structural nodes were distinguished, and the results were combined to determine the stiffness of the unit forming the entire grid.

Results and Conclusion:

From the results of analysis, it was found that the optimal angles of diagonal elements were in the range of 50-65 degrees. Although the behavior
of the new pattern in terms of shear stiffness was between the two previous patterns (and closer to the hexagonal pattern), the shear stiffness ratio
increased from 30° to 65° for cube pattern, while for hexagrid, it decreased over the same range of angles.
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1. INTRODUCTION

High-rise  building  is  a  new  challenge  that  is  managed
through the application of high-strength, lightweight materials.
As the height of the structures increases,  the effect  of lateral
loads is dominated in the design, and loads such as wind and
earthquakes  cause  larger  deformations  in  the  building.
Therefore developing new lateral bearing systems is required
for reducing these deformations [1].

One  of  the  most  creative  and  adaptable  construction
methods for tall buildings is diagrid (diagonal grid structures),
especially  in  the  last  ten  years.  Diagrid  structures  take
advantage of prefabricated and modular elements [2]. Diagrid
is  a  perimeter  resisting  system  derived  from  framed  tube
structures as a result of eliminating vertical columns. Tubular
systems  can  help  achieve  high  efficiency  and  architectural
potential. They are stiffer and resist vertical and lateral loads
better. The last generation of tubular systems is perimeter grid
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tubes with geometric patterns (reticular structures made of steel
diagonal elements). According to their configuration, they can
be distinguished as Diagrid, Pentagrid, Hexagrid, Octagrid and
Voronoi grid. As a mathematical pattern, Voronoi is formed by
observing the irregular patterns in nature, such as ribs on a leaf,
patterns  on  giraffe  fur,  wings  of  insects,  etc.  Each
configurationshould  be  evaluated  for  material  savings,  drift
limitation, and structural member utilization [3].

The triangular modulus (diagrid) has been the only model
used  in  diagonal  grid  structures  for  a  long  time.  In  order  to
develop  grid  patterns,  the  possibility  of  applying  other
structural  forms  found  in  nature  as  diagonal  grids  has  been
discussed recently.  The hexagon is  one of  the most  common
forms  found  in  nature.  It  can  also  be  regarded  as  a  kind  of
Voronoi  grid.  The  hexagonal  pattern  (hexagrid)  inspired  by
natural  (honeycomb  structure)  has  a  high-efficiency  ratio
(stiffness  to  weight).  A  hexagrid  is  a  bending-dominated
structure,  so  it  is  inevitably  less  stiff,  and  therefore  less
efficient, in terms of weight, than a diagrid [4]. On the façade
of a hexagrid structure, steel density is lower (about 40%) than
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the density of diagrid structures. So, hexagrids will produce a
better daylight performance. However, it has weaker stiffness
[5]. Since hexagrid is a bending-dominated structure, it can be
used in the lower parts of high-rise buildings where there is a
large  bending  moment,  transitioning  to  diagrid  at  the  upper
levels.  This  design  would  take  into  account  structural  and
economic requirements. However, there is no specific solution
for the transition zone. There has been considerable discussion
and  use  of  diagrid  and  hexagrid  in  recent  designs.  Although
some  research  is  dedicated  to  proposing  other  innovative
patterns such as irregular Voronoi grid, pentagrid, etc., there is
still a need to explore non-conventional patterns. The purpose
of  this  study  is  to  present  a  new  pattern  for  diagonal  grid
structures and compare its performance with two other widely -
used patterns (triangular and hexagonal). The new pattern can
also  be  used  as  a  solution  for  the  transitional  zone  from  the
diagrid to hexagrid. Because this pattern's modulus is similar to
the perspective view of a cube (isometric cube), it is called the
isometric  cube  grid  (IC-grid).  It  can  also  be  considered  as  a
repetition of the six-pointed star, which is an ancient Persian
architectural motif (Fig. 1).

Fig.  (1).  From  left  to  right:  Isometric  Cube,  six-pointed  star,  six-
pointed star in Persian architecture.

2. RESEARCH BACKGROUND

Academic research on the diagrid structural system began
in  2005 by Kyoung-Sun Moon,  under  a  doctoral  dissertation
from MIT University [6]. Before that, research in this field was
limited  to  specific  projects.  Extensive  research  works  have
been  conducted  on  the  diagrid  structural  system  since  2006.
Research  in  this  field  can  be  divided  simply  into  four
categories,  as  follows:

1-  Definitions  and  optimization  of  building  components
(improved dimensions of the sections, ratio of height to width
of the building, angle of diagonal components, module height).

2-  Analysis  and  design  (calculation  of  lateral  stiffness,
earthquake forces, deformations, presentation of computational
methods, design of nodes and connections, designing optimal
dimensions of components),

3-  Presenting  new  patterns  for  the  diagrid  system
(hexagrid,  pentagrid,).  This  study  belongs  to  this  category,

4-  Review  articles  and  case  studies  of  implemented
structures.

2.1. Research on Presenting New Patterns

Just  de  Meijer  [7]  introduced  and  examined  the
characteristics  and  features  of  the  hexagrid  pattern  and

compared  the  structural  behavior  of  this  pattern  with  the
diagrid  pattern  in  terms  of  stiffness  and  efficiency  in  his
master's  thesis  from  the  University  of  Eindhoven.  This
structure is similar to a diagrid, except that its bracing grid is
not  triangular  but  hexagonal.  In  his  research,  he  used  a
parametric method that could be applied to assess other types
of innovative patterns as well. Mashhadi Ali and Kheyroddin
[5] introduced the hexagrid pattern then compared the hexagrid
and diagrid patterns in two cases with and without secondary
bracing.  The  researchers  concluded  that  secondary  bracing
increases the stiffness sensitivity of hexagrids three times more
than  diagrids.  Taranath  et  al.  [8]  introduced  the  pentagrid
pattern  (made  of  irregular  pentagons)  as  a  new  pattern,
examined  its  structural  properties  in  high-rise  buildings,  and
compared it with the hexagrid pattern. In their study, pentagrid
performed better than hexagrid against lateral deformation, and
the  optimal  brace  angle  for  it  was  35  degrees.  There  is  a  lot
written about the angle variation in diagrid structures, but very
little on the variable density patterns along with building height
except Montuori et al. [9] who assessed the effect of changing
the  angle  and  number  of  diagonals  along  with  the  building
height for the diagrid pattern. Based on the results, the patterns
with the tallest modules had a high requirement of a secondary
bracing  system  for  reducing  the  inter-story  drifts  and
stabilizing  the  core  gravity  columns  at  intermediate  floor
levels.  In  addition,  their  design  procedures  can  be  helpful  in
exploring pattern solutions to develop diagrid potential. Zhao
and  Zhang  [10]  evaluated  diagrid  patterns  with  curved  and
varying-angle  straight  diagonals  from  bottom  to  top.  They
proposed empirical formulas for optimal values of bottom and
top angles for each configuration. Montuori et al. [4] examined
and compared the hexagrid pattern and its modeling and design
with  the  diagrid  pattern  in  a  simulated  high-rise  building
similar to the building in actual use, i.e. the 90 floor, 351 meter
Sino Steel International Plaza. Researchers have proposed that
the optimal angle in horizontal hexagrid and diagrid patterns is
60 degrees, while 30-50 degrees was proposed as an optimal
angle  in  vertical  hexagrid  patterns.  Ebin  and  Prakash  [11]
investigated the structural behavior of the hexagrid pattern in
multi-story buildings with 15 stories and the aspect ratio H/B
less than 7. For this application, a 65-degree angle was optimal.
Saeedi Nejad et al. [12] introduced and compared the seismic
performance  of  tubular  structural  systems  of  diagrid  and
hexagrid  in  high-rise  buildings.  According  to  the  results,
hexagrid had less weight than diagrid and also more resistance
against progressive collapse. Lee and Kim [13] investigated a
60-story building with a hexagrid pattern and showed that the
vertical  hexagrid  pattern  is  more  stable  than  the  horizontal
hexagrid. Angelucci and Mollaioli [14] examined the stiffness-
based  methodology  effectiveness  proposed  by  literature  by
applying it to 90-story diagrids and showed that The stiffness-
based  design  method  could  be  used  to  determine  optimality
conditions only for diagrids with an inclination range of 60-70.
The  iterative  optimization  technique  is  suitable  for  steeper
diagonal angles. Results show that local density is not the best
approach to take. A variable pattern density is a more efficient
solution by rarefying the diagonal  elements  from the base to
the top of the building. Danish et al. [1] compared diagrid and
hexagrid structures with the same loading and properties by the
ETABS software, and finally, the hexagrid structure was more
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economical  and  stable  than  diagrid.  Tomei  et  al.  [15]
investigated  different  geometric  patterns  in  regular  diagrid
structures with new or complex shapes for high-rise buildings,
in this study, possible combinations of rhombic and triangular
diagonal  components  (cross-sections  or  with  curved
components) and their optimization in high-rise buildings are
examined with a genetic algorithm to reduce the final weight of
the  structure  when  stiffness  is  constant.  Angelucci  and
Mollaioli  [3]  examined  the  possibility  of  using  non-regular
grids for the structural systems of tall buildings. They focused
particularly on periodic and non-periodic Voronoi tessellations.
Using  parametric  modeling,  they  generated  Voronoi-like
patterns  by  gradually  perturbing  a  regular  honeycomb
configuration.  This  paper  focused  on  the  impact  of  the  grid
arrangement on the lateral stiffness of the perimeter tube. As a
result,  at  the  same  density  rate,  cell  irregularity  has  no
significant impact on lateral stiffness, and gradual reduction in
density is a suitable strategy for tall  buildings with Voronoi-
like grids. Mele et al. [16] evaluated nonregular patterns based
on  the  Voronoi  diagram.  This  research  was  focused  on
assessing the mechanical properties of this grid based on the
concept of the representative volume element (RVE) and the
development of this concept on a statistical basis to account for
the inherent irregularities, non-periodicity and randomness of
the  grid.  In  their  work,  they  defined  a  framework  that
encompassed  an  almost  endless  variety  of  structural
configurations,  including  diagrid,  hexagrid,  voronoi,  foam
trusses,  and  more.  Mashhadi  Ali  and  Kheyroddin  [17]
conducted  studies  on  the  seismic  performance  of  hexagrid
structures  to  develop  their  previous  work.  In  this  system,  an
attempt is made to reduce the concentration of damage on the
converging braces to achieve a uniform drift distribution in the
story and prevent forming a soft story mechanism. The results
estimated  the  value  of  the  proper  coefficient  to  be  4.  The
optimal digonal angle was also obtained from 30 to 40 degrees.
A  recent  review  by  Scaramozzino  et  al.  [18]  gives  a
comprehensive overview of the diagrid structural system, with
a particular focus on the optimization of these systems based
on geometrical patterns and recent research on diagrid nodes.
The  authors  noted  that  diagrids  could  be  further  optimized
based  on  geometrical  features,  making  them  suitable  for
sustainable design. Moreover, they declared grid-based tubes,
including  diagrids,  were  the  top  candidates  for  achieving
efficient, attractive and sustainable tall buildings in the future.

3. RESEARCH METHODOLOGY

3.1. Introduction of a New Pattern (Isometric Cube)

The pattern of a modular structure is created by parametric
duplication of an initial motif. With duplication of geometrical
shapes,  a  kind  of  tessellation  emerges.  Tessellation  is  an
unlimited  set  of  polygon  duplications.  These  polygons  fit
together so that they completely cover the surface. Here, each
side of a polygon is the side of the surrounding polygons. Each
pattern  can  be  created  horizontally  or  vertically.  A  vertical
pattern  is  a  structure  that  has  only  diagonal  or  vertical
elements;  meanwhile,  the  horizontal  pattern  is  made  of  only
diagonal  or  horizontal  elements.  The  present  study  focused
only on horizontal patterns.

In  this  research,  a  new  pattern  was  investigated  for  the
diagonal  grid  system  which  was  called  as  Isometric-Cube
pattern.  (IC-grid)  (Fig.  2).

3.2.  Investigation of  Structural,  Mechanical  Properties  of
Isometric Cube Pattern

Comparisons  among  patterns  are  conducted  based  on
efficiency. In a grid-based structure, efficiency is obtained by
dividing the grid stiffness (stiffness against lateral or vertical
loading)  by  its  structural  weight  (here,  the  grid  density  is
representative of  its  weight).  The stiffness of  a  structure is  a
major  influence  on  its  lateral  deformation.  Stiffness
coefficients are classified into two categories: axial and shear
stiffness.

Fig. (2). Isometric-Cube pattern.

In  order  to  analyze  the  grid  structure,  its  mechanical
properties  are  determined  by  comparing  it  to  an  equivalent
solid structure (with similar  dimensions:  same width,  height,
and thickness). In order to determine the stiffness of the grid
structure, we apply a modifying factor to the structure stiffness.
A high-rise building is assumed to be a deterministic cantilever
beam [4]. The beam is simultaneously subjected to bending and
shear forces. Therefore, both axial and shear stiffness must be
adjusted (Fig. 3).

Fig. (3). Orthotropic membrane tube analogy: (a) structural grid; (b)
equivalent solid [4].

The axial moduli (E*) is defined as the ratio of the uniaxial
normal stress, σ, divided by the uniaxial strain, ε, in the loaded
direction in the elastic range (Equation 1). Similarly, the shear
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moduli (G*) is related to the shear force (Equation 2) [4].

(1)

(2)

Where:

F1= average normal force, which is a substitution of normal
stress (σ),

F2= average  shear  force,  which  is  a  substitution  of  shear
stress (τ),

B= the width of cross-section,

b = the thickness of cross-section,

H= the height of the structure (initial length),

∆x=  transverse  displacement  resulting  from  shear  stress
when  the  displacements  along  the  y-axis  of  nodes  on  the
bottom  and  on  the  top  edges  are  constrained.

∆y=  shortening  or  lengthening  resulting  from  normal
stress,

γ = shear strain,

ε = normal strain.

The horizontal grid (consisting of diagonal and horizontal
elements) for patterns is considered here. The modulus in the
hexagrid,  the  diagrid,  and  the  new  one  are  hexagonal,
triangular,  and  isometric  cube.  Each  of  the  three  horizontal
patterns is shown with its modulus and unit cell (Fig. 4).

Fig. (4). Modules and unit cells for three pattern: Diagrid, Hexagrid
and Isometric-Cube (IC-grid).

3.3. Calculation of Relative Density for Different Patterns

The relative density of grids (ρ) is obtained by dividing the
volume occupied by solid material (ρ*) by the total volume of
cell [19]. Previous research has shown that diagrid structures'
efficiency is significantly related to the angle of their diagonal
elements  [20].  The  effect  of  changing  the  angle  of  diagonal
elements is fully considered in the concept of grid density.

The relative grid density is calculated using Equation (3):

(3)

Where the n is the total number of elements; li and Ai are
the length and the section area of elements, respectively; L1 and
L2  are  the  dimensions  of  unit  cell  along  x  and  y  direction,
respectively, and b is the thickness of unit cell.

In the case of the isometric cube pattern and according to
the definition of relative density, a different unit cell type is,
predictably shown in Fig. (5). As we will see later, this form of
the unit cell is efficient in describing the structural performance
of the grid (which is a combination of two types of nodes with
different numbers of connections).

Fig. (5). Unit cell for Isometric cube grid.

According  to  Equation  (4),  the  new  pattern's  relative
density  (ρIC)  is  twice  the  relative  density  of  the  hexagrid
pattern.

(4)

Where h  and d  are  the  length of  horizontal  and diagonal
elements,  respectively,  and  θ  is  the  angle  between  diagonal
elements and horizontal axis. Ah and Ad are the area section of
horizontal  and diagonal elements of the grid,  respectively.  A
comparison of the relative density of the different grids is given
in Table 1.

Table 1. Comparison of the relative density of the different
grids

3.4. Calculation of the stiffness correction factor

3.4.1. Determination of the representative volumetric element
(RVE) for isometric cube pattern

The representative volumetric element (RVE) must first be
identified to determine the structural behavior of a grid-based
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structure (to calculate its correction factors). The representative
volumetric element is the smallest homogeneous volume unit
on  which  the  larger  model's  structural  equations  are  formed,
and  it  can  be  defined  after  determining  the  unit  cell  of  each
grid.

In  the  case  of  the  isometric  cube  pattern,  unlike  the
previous two patterns, the nodes are not of the same type in the
whole grid. The first type, high-connectivity (type 1), is similar
to the nodes of diagrid patterns with six connected elements;
the second, low-connectivity (type 2), is similar to the nodes of
hexagrid patterns with three attached elements. Therefore, the
type of nodes in the new pattern is not uniform as the previous
two patterns and its structural behavior cannot be described by
a unique representative volumetric element with a unique node.
Based on how the nodes were distinguished, it is predicted that
the  pattern  may  behave  like  a  kind  of  intermediate  pattern
between  hexagrid  and  diagrid.  The  type  1  nodes  can  be
considered  to  be  pin  connections  as  in  diagrid  patterns,
however,  to  achieve  a  uniform  grid,  all  connections  are
assumed  rigid  in  the  present  study,  both  for  the  six-element
(type 1) and three-element (type 2) nodes.

When  an  infinite  isometric-cube  grid  is  under  uniaxial
compression,  if  the  connections  are  considered  rigid,  hinges
will  emerge  at  the  elements'  mid-length  where  the  bending
moments  are  equal  to  zero  (Similar  to  the  hexagrid  pattern
under the same conditions) (Fig. 6).

Fig.  (6).  Infinite  isometric-cube  pattern  grid  with  rigid  connections
under  uniaxial  compression,  left:  moment  diagram;  right:  deformed
configuration. (SAP2000)

In order to simplify the structural behavior of the isometric
cube  pattern,  it  is  possible  to  use  two  types  of  volumetric
elements, one similar to the diagrid pattern (slightly modified)
and the other similar to the hexagrid pattern, simultaneously in

a single cell. For this purpose, to determine the load share of
different volumetric elements, the unit cell is divided into three
separate parts based on the position of mid-length hinges. Each
part includes a volumetric element with one type of nodes (Fig.
7).

Fig. (7).  The load share of different nodes in RVE of the Isometric-
Cube (IC-grid).

By considering the hinges' location, the size of each part
can  be  limited  to  a  bending  frame  surrounded  by  the  inner
hinges. RVE of the type 1 nodes is shown in Fig. (8) for the
isometric cube pattern under uniaxial  compression.  This part
has similarities to the RVE of the diagrid. Although there is not
a third component (horizontal  element)  which forms a stable
triangle like diagrid RVE, this frame is determinate and stable.
(h1 represents the length of the base in the hypothetical triangle.
According  to  the  angles  of  diagonal  elements,  it  might  be
different  from  h,  which  represents  the  length  of  horizontal
elements in the grid)

For type 2 nodes, RVE is shown in Fig. (9) under uniaxial
compression.  The  connections  are  rigid  in  the  pattern.  This
RVE  is  similar  to  the  hexagrid’s  RVE  except  for  its
dimensions. For such an RVE, deformations and modification
factors have been calculated by de Meijer [7].

3.4.2. Calculation of Axial Stiffness Modification Factors of
the New Pattern

By  considering  the  effect  of  all  forces  on  the  elements
(including axial force, bending moment force, and shear force),
the values of axial stiffness modification factors for the diagrid,
hexagrid and new pattern are obtained and are shown in Table
2 (For detailed calculations, see appendix A)

Table 2. Axial stiffness modification factors for the diagrid, hexagrid and new pattern.

E*/Es RVE for Grid Pattern

Horizontal Diagrid [7]

Horizontal Hexagrid [7]
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I (rigid)-

𝑠𝑖𝑛3𝜃 . 𝐴ℎ. 𝐴𝑑

𝐴ℎ. 𝑏. 𝑑. cos 𝜃 + 𝐴𝑑 . 𝑏. 𝑑. 𝑐𝑜𝑠4𝜃
 

12. 𝐼𝑑 . 𝑠𝑖𝑛 𝜃. 𝐴𝑑

𝑏. (ℎ + 𝑑. 𝑐𝑜𝑠 𝜃). [(𝐴𝑑𝑑2 + 24𝐼𝑑(1 + 𝜐)𝛼). 𝑐𝑜𝑠2𝜃 + 12𝐼𝑑𝑠𝑖𝑛2𝜃]
 

24. 𝐼𝑑 . 𝑠𝑖𝑛 𝜃. 𝐴𝑑

𝑏. ℎ1. [(𝐴𝑑𝑑2 + 24𝐼𝑑(1 + 𝜐)𝛼). 𝑐𝑜𝑠2𝜃 + 12𝐼𝑑𝑠𝑖𝑛2𝜃]
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E*/Es RVE for Grid Pattern

Horizontal Isometric Cube- Node Type

II (rigid)-

Fig. (8). Uniaxial compression test: Definition of the RVE (representative volumetric element) of the type 1 nodes for Isometric-Cube pattern with
rigid connections.

Fig. (9). Uniaxial compression test: Definition of the RVE (representative volumetric element) of the type 2 nodes for Isometric-Cube pattern with
rigid connections

3.4.3. Calculation of Shear Stiffness Modification Factor of
Patterns

When an infinite isometric-cube grid is under shear load, if
the connections are considered rigid, hinges will emerge at the
elements' mid-length where the bending moments are equal to
zero  (Similar  to  the  hexagrid  pattern  under  the  same
conditions)  (Fig.  10).

Under  shear  stress,  RVE  for  type  1  nodes  Fig.  (11)  is

shown in (Fig. 11).

Fig. (12) is the RVE for type 2 nodes under shear stress. It
is  similar  to  hexagrid’s  RVE  whose  deformations  and
modification factors have been calculated by De Meijer [7].

By  considering  the  effect  of  all  forces  on  the  elements
(including axial force, bending moment force, and shear force),
the  values  of  shear  stiffness  modification  factors  of  three
patterns are shown in Table Table 3. (For detailed calculations,
see Appendix A)

 
𝐸1,𝑟

∗

𝐸𝑠

24. 𝐼𝑑 . 𝑠𝑖𝑛 𝜃. 𝐴𝑑

𝑏. (2𝑑. 𝑐𝑜𝑠 𝜃 + ℎ). [(𝐴𝑑𝑑2 + 24𝐼𝑑(1 + 𝜐)𝛼). 𝑐𝑜𝑠2𝜃 + 12𝐼𝑑𝑠𝑖𝑛2𝜃]
 

(Table 2) contd.....
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Fig.  (10).  Infinite  isometric-cube  pattern  grid  with  rigid  connections  under  shear  load,  left:  moment  diagram;  right:  deformed  configuration.
(SAP2000).

Fig. (11). Shear test: definition of the RVE (representative volumetric element) of the type 1 nodes for Isometric-Cube pattern with rigid connections.

Fig. (12). Shear test: definition of the RVE (representative volumetric element) of the type 2 nodes for Isometric-Cube pattern with rigid connections.

Table 3. Shear stiffness modification factors for the diagrid, hexagrid and new pattern.

Pattern G*/G RVE for Grid

Horizontal Diagrid [7]
2𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 . 𝐴𝑑(1 + 𝜐)

𝑑. 𝑏
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Pattern G*/G RVE for Grid

Horizontal Hexagrid [7]

Horizontal Isometric Cube- Node Type I

Horizontal Isometric Cube- Node Type II

Fig. (13). Axial and shear stiffness divided by relative density versus diagonal angle: (left) Hexagrid; (right) Diagrid [4].

3.5.  Comparing  the  Modified  Stiffness  Ratio  to  Relative
Density with changes in the Angle of Diagonal Elements in
Different Patterns

The concept of relative density can be used to evaluate the
efficiency of different grids. Dividing the grid stiffness by its
relative  density  gives  a  value  on  which  the  grid's  efficiency
depends.  This  value  for  each  grid  depends  entirely  on  the
choice  of  the  optimal  angle  of  the  diagonal  elements.  The
optimal  angle  for  the  elements  is  the  angle  that  provides  the
best balance between stiffness and density (in other words, it
means economic expenditure) for the grid.

(Fig. 13) shows graphs that are obtained for the diagrid and
hexagrid  patterns  based  on  the  equations  presented  for  axial
and  shear  stiffness  in  Tables  2  and  3,  and  also  the  relative
densities in Table 1. These graphs are calculated once for axial
stiffness and once for shear stiffness. The obtained graphs are
quite  similar  to  those  of  Montouri  et  al.  [4],  which  were
calculated  here  again.  By  comparing  the  two  obtained  line
graphs in each pattern, the range of diagonal angles where both
graphs have shown the maximum efficiency is almost 50 to 70
degrees.  Therefore  the  range  of  optimal  angles  can  be
considered from 50 to 70 degrees for both cases of diagrid and
hexagrid patterns.

24. 𝐴𝑑𝐴ℎ𝐼ℎ𝐼𝑑(ℎ + 𝑑𝑐𝑜𝑠𝜃)(1 + 𝜐)𝑠𝑖𝑛𝜃

12𝐴ℎ𝐼𝑑𝐼ℎ. 𝑏. 𝑐𝑜𝑠𝜃(2𝑑ℎ + (𝑑2 + ℎ2)𝑐𝑜𝑠𝜃) +

𝑏𝑠𝑖𝑛2𝜃((12𝐴ℎ𝐼𝑑𝐼ℎ(𝑑2 + 2ℎ2(1 + 𝜐)𝛼)

+(𝐴𝑑𝑑ℎ. (𝐴ℎℎ(2ℎ𝐼𝑑 + 𝑑𝐼ℎ) + 48𝐼𝑑𝐼ℎ𝛼(1 + 𝜐))))

 

48 𝐼𝑑 . 𝐴𝑑(1 + 𝜐)𝑠𝑖𝑛𝜃𝑐𝑜𝑠2𝜃

𝑏. ℎ. [(𝐴𝑑𝑑2 + 24𝐼𝑑𝛼(1 + 𝜐))𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 +

6𝐼𝑑(𝑠𝑖𝑛4𝜃 + (1 + 𝑐𝑜𝑠2𝜃)2)]

 

48. 𝐴𝑑𝐴ℎ𝐼ℎ𝐼𝑑(ℎ + 𝑑𝑐𝑜𝑠𝜃)2(1 + 𝜐)𝑠𝑖𝑛𝜃

(ℎ + 2𝑑𝑐𝑜𝑠𝜃)[12𝐴ℎ𝐼𝑑𝐼ℎ. 𝑏. 𝑐𝑜𝑠𝜃(2𝑑ℎ + (𝑑2 + ℎ2)𝑐𝑜𝑠𝜃) +

𝑏𝑠𝑖𝑛2𝜃((12𝐴ℎ𝐼𝑑𝐼ℎ(𝑑2 + 2ℎ2(1 + 𝜐)𝛼)

+(𝐴𝑑𝑑ℎ. (𝐴ℎℎ(2ℎ𝐼𝑑 + 𝑑𝐼ℎ) + 48𝐼𝑑𝐼ℎ𝛼(1 + 𝜐))))]
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(Table 3) contd.....
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In  the  case  of  an  Isometric-cube  pattern  with  rigid
connections,  the  stiffness  of  RVE  must  be  obtained  by
combining  the  stiffness  of  two  types  of  nodes  (Type  1,  2).
Under  load,  the  formation  of  median  hinges  allows  us  to
distinguish  three  separate  structural  parts  which  have  one  of
two types of nodes. Each part has its RVE and is connected to
the other at the median hinge of the horizontal elements (Fig.
14).

Fig.  (14).  The  RVE  of  Isometric-Cube  pattern  (IC-grid)  as  a combination of hexagrid's RVE (with type-2 node)  and diagrid's  RVE
(with type-1 node).

According  to  Fig.  (14),  this  RVE  can  be  regarded  as  a
combination  of  two  hexagrid’s  RVE  (with  ‘Type  2’  nodes)
located on either side of a diagrid’s RVE (with ‘Type 1’ node).
As a solution, the stiffness of this RVE is calculated with the
same formulas used to calculate spring set stiffness. In a set of
parallel  springs,  each  spring's  force  is  different  from  and
parallel to the other, so the total force (total) is obtained from
the  sum of  each  force.  On  the  other  hand,  the  change  in  the
length of all springs (∆) under load is equal. Consequently, the
spring constant of the set is equal to the sum of all the spring
constants. Similarly, in axial loading, the RVE of an isometric
cube is under such conditions. Therefore, similar to the sum of
stiffness for parallel springs, the following Equation is used to
calculate the total axial stiffness of the isometric cube’s RVE:
(Equation 6)

(5)

To calculate the shear stiffness of the RVE shown in (Fig.
14),  there  are  also  some  resemblances  between  RVE  under
shear load and spring set with series springs. In series springs,
the  force  remains  constant  throughout  the  set  of  springs.
Simultaneously, the amount of deformation of the set is equal
to  the  sum  of  each  spring's  deformations.  According  to  the

lateral loading (shear force) applied to the entire isometric-cube
grid, every RVE is under the same shear stress (similar to the
springs in a series set), whereas each type of node has its share
of the total force. It depends on the limited area of each node
(as  shown  in  Fig.  7).  Like  the  series  springs,  the  total
deformation of this RVE is equal to the sum of deformation of
nodes.  Therefore,  the  equation  of  the  total  stiffness  for
calculating the shear stiffness of the isometric-cube’s RVE is
as follows: (Equation 7)

(6)

As shown in Fig. (15), the isometric cube pattern's optimal
angles are in the range of 50 - 70 degrees, similar to the two
other patterns.

Comparison of the results from dividing the stiffness ratio
to  relative  density  for  different  patterns  in  a  chart
simultaneously  shows  that  in  the  case  of  axial  stiffness,  the
values  of  the  graph  for  the  isometric  cube  pattern  with  rigid
connections  from  angles  40  to  80  degrees  are  significantly

larger than the two previous patterns (Fig. 16).

From Fig. (17), it is obvious that the efficiency of diagrid
based on shear stiffness is much higher than both the hexagrid
and  the  cubic-grid.  Consequently,  the  diagrid  pattern  is  the
most efficient against lateral loads. According to the significant
shear  stiffness  of  the  diagrid  pattern,  to  compare  between
hexagrid  and  new  patterns,  the  graph  related  to  the  diagrid
pattern is removed. After deleting the corresponding graph, the

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑡𝑦𝑝𝑒 2 + 𝐹𝑡𝑦𝑝𝑒 1 + 𝐹𝑡𝑦𝑝𝑒 2 

𝐹 = 𝐾∆  , ∆𝑡𝑦𝑝𝑒1= ∆𝑡𝑦𝑝𝑒2= ∆𝑡𝑜𝑡𝑎𝑙= ∆ 

𝑲𝒕𝒐𝒕𝒂𝒍∆𝑡𝑜𝑡𝑎𝑙= 𝐾𝑡𝑦𝑝𝑒1∆𝑡𝑦𝑝𝑒1 + 2𝐾𝑡𝑦𝑝𝑒2∆𝑡𝑦𝑝𝑒2    →𝑬𝒕𝒐𝒕𝒂𝒍 = 𝐸𝑡𝑦𝑝𝑒1 + 2𝐸𝑡𝑦𝑝𝑒2 

∆𝑡𝑜𝑡𝑎𝑙=  ∆𝑡𝑦𝑝𝑒 1 + 2∆𝑡𝑦𝑝𝑒2 
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  →
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+
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𝑘𝑡𝑦𝑝𝑒2
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efficiency  based  on  shear  stiffness  for  the  new  pattern
compared  to  the  hexagrid  pattern  is  shown  in  Fig.  (18).

Fig.  (18)  shows  that  the  behavior  of  the  isometric  cube
pattern  is  different  from  the  hexagrid  pattern  in  terms  of
efficiency based on the shear stiffness. In the case of hexagrid
pattern,  this  efficiency  declines  rapidly  from  30°  to  88°,
whereas  for  the  new  pattern,  the  efficiency  increases
substantially  in  the  angle  range  30  °-  65  °,  and  decreases
gradually in the range 70° -80 °. Therefore, it is predicted the

shear  behavior  of  the  new  pattern  would  be  better  than  the
hexagrid pattern in the range of the most practical angles (50 -
65 degrees).

It should be noted that if the angle of the diagonal elements
increases  over  70  degrees  in  the  new  pattern,  the  diagonal
elements of the type 1 node tend towards the vertical elements.
Due to the proximity of four vertical elements around the type
1 nodes, it may result in implementation problems.

Fig. (15). Axial and shear stiffness divided by relative density versus diagonal angle for Isometric-Cube pattern (IC-grid).

Fig. (16). Comparison among patterns for axial stiffness ratio to relative density.
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Fig. (17). Comparison among patterns for shear stiffness ratio to relative density.

Fig. (18). Comparison between Hexagrid and Isometric-Cube patterns for axial stiffness ratio to relative density.

CONCLUSION

In  order  to  develop  the  current  patterns  for  high-rise
buildings whose structural  configuration is  based on tubes,  a
new  pattern  for  based-grid  structures  was  introduced  in  this
study. The new pattern is called the isometric cube (IC-grid).
The main objective of this study was to assess the structural,
mechanical  properties  of  the  new  pattern  and  compare  its
potential efficiency with other common patterns (triangular and
hexagonal).

For this purpose, the design process was performed based
on a simple stiffness criterion presented in previous research
(efficiency).  Three  patterns  of  diagrid,  hexagrid  and  new
pattern (isometric cube) were evaluated and compared in their
horizontal position.

This pattern, unlike the two previous patterns, did not have
only one type of repetitive node, so RVE of it was calculated
by  differentiating  the  two  types  of  existing  structural
nodes(three-element  and  six-element).  The  results  were
combined  to  determine  the  stiffness  of  the  entire  grid.  All
connections were assumed to be rigid.

The  optimal  angle  range  of  the  diagonal  elements  of  the
new pattern (isometric cube) is obtained in the range of 50 - 65
degrees in the horizontal position. Isometric cube pattern and
diagrid pattern have the best efficiency against axial and shear
loads,  respectively.  In  the  case  of  efficiency  based  on  axial
stiffness,  the  values  of  the  isometric  cube  pattern  are
significantly larger than the two previous patterns from angles
40 to 80 degrees. The efficiency based on shear stiffness for the
Isometric  cube  pattern  is  similar  to  the  hexagrid,  but  the
behavior  of  the  isometric  cube  pattern  is  different  from  the
hexagrid pattern in the range of optimal angles. For IC-grid, the
efficiency increases substantially in the angle range 30 °- 65 °,
whereas  for  hexagrid,  this  efficiency  descends  in  the  same
range of angles. Therefore, it is predicted the shear behavior of
the new pattern might be better than the hexagrid pattern in the
range of 50 - 65 degrees.

The new pattern will be suitable for transition zones from
the diagrids to the hexagrids in high-rise buildings, as well as
for buildings with unusual shapes and complicated architecture
where shear forces are significant.
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APPENDIX A

A.1. List of Symbols:

F1 = vertical load

F2 = horizontal load

∆M, ∆lblending = displacement dealing with bending moments
resulting from the load (F1) or (F2).

∆V, ∆Lshear = displacement deals with shear forces resulting
from the load (F1) or (F2).

∆S, ∆LAXIAL = displacement deals with axial forces resulting
from the load (F1) or (F2).

m1 = bending moment resulting from the unit load,

v = shear force resulting from the unit load,

u = axial force resulting from the unit load,

M = bending moment resulting from load (F1) or (F2),

V = shear force resulting from load (F1) or (F2),

S = axial force resulting from load (F1) or (F2),

∆X1 = displacement along the vertical axis (Y),

∆X2 = displacement along the horizontal axis (X)

σ1 = normal stress

τ = shear stress

ε = normal strain

γ = shear strain,

Es = modulus of elasticity in tension or compression

Gs = modulus of elasticity in shear,

Id = moment of inertia of area for diagonal elements,

Ih = moment of inertia of area for horizontal elements,

Ad = area section for diagonal elements,

Ah = area section for horizontal elements,

d = length of diagonal elements,

h = length of horizontal elements,

h1  =  the  length  of  the  base  in  the  hypothetical  triangle.
According  to  the  angles  of  diagonal  elements,  it  might  be
different from h (related to (Figs. 8 and 11)

υ = Poisson’s ratio,

α = form factor for shear,

L = Length of elements,

l = initial length (related to RVE),

b = Width (related to RVE),

0 = Angle between diagonal elements and horizontal axis.

Ax  = Reaction force along with horizontal axis related to
support ‘A’,

Ay  =  Reaction  force  along  with  vertical  axis  related  to
support ‘A’,

Cy  =  Reaction  force  along  with  vertical  axis  related  to
support ‘C’,

MA = bending moment related to support ‘A’,

δ = deflection,

A.2. Calculation of Axial Stiffness Modification Factor for
Type 1 Nodes (shown in Fig. 8)

The  displacement  due  to  vertical  loading  in  the  frame
shown in Fig. (8), which is obtained by Castigliano's theorem
or Unit-Load method. The vertical displacement at the point B
is found to be:

Σ Y = 0 ,   ∑ MA = 0             F1 = σ1. h. b ,        Ay = Cy =
F1

2
 

Σ X = 0,    Ax = 0 

∆X1 = ∆M + ∆V + ∆S= ∫
Mm1 dx
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−

F
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αVv dx
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F
+ ∑

SuL
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A.3. Calculation of Axial Stiffness Modification Factor for
Type 2 Nodes (shown in Fig. 9)

A.4. Calculation of Shear Stiffness Modification Factor
 for

Type 1 Nodes (shown in Fig. 11)

RVE for type 1 nodes is shown in Fig. (11). The
 horizontal

displacement at the point B is found to be:

A.5. Calculation of Shear Stiffness Modification Factor for
Type 2 Nodes (shown in Fig. 12)

The structure is split up into three elements: AB, BD and
BC. The axial forces, shear forces and moment diagrams of all
the  elements  should  be  known  in  order  to  calculate  the
displacements.  The  reaction  forces  are:
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