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Abstract:

Background:

The reliable determination of geomechanical parameters of rocks such as Unconfined Compressive Strength (UCS) using laboratory methods is
problematic and time-consuming. In this regard, the construction of reliable predictive models for assessing the UCS is of advantage.

Objective:

The main purpose of this work is to propose the use of a reliable PSO-based ANN approach for predicting the UCS of sandstones.

Methods:

For this purpose, laboratory tests were performed on 60 sandstone specimens. The laboratory tests comprise P-wave velocity, dry density, Schmidt
hardness and UCS. Apart from the latter, the other laboratory tests were set as model inputs. Prediction performance of the constructed model was
assessed according to the criteria including coefficient of determination (R2), Root Mean Squared Error (RMSE) and Variance Account For (VAF).

Results:

Results (R2= 0.974 and RMSE = 0.086 and VAF = 97.5) showed the reliability of the constructed PSO-based ANN model to predict UCS of
sandstones.

Conclusion:

Hence, this study recommends utilizing PSO-based ANN as a feasible tool for assessing UCS of sandstones. Nevertheless, further research is
suggested for model generalization purposes.
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1. INTRODUCTION

Rock characterization plays an important role in design of
geotechnical  structures.  There  are  several  methods for  deter-
mining the engineering properties of rocks. These methods are
often  divided  into  direct  and  indirect  methods.  Unconfined
Compressive  Strength  (UCS)  of  rock  is  one  of  the  direct
methods  for  evaluating  the  compressive  behavior  of  rock
samples.  The  test  is  standardized  by  ISRM  [1].  However,
determining  UCS  is  relatively  costly  and  destructive.  Addi-
tionally, sometimes  providing high-quality rock specimens is a
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difficult task to be accomplished more especially in the case of
porous,  thinly  bedded,  foliated,  weak  and  weathered  rocks.
These  impeding  factors  encourage  laboratory  technicians  to
utilize  easier  methods  (indirect  methods)  for  assessing  the
compressing  strength  of  rocks.  Indirect  methods  including
point  load  index  text,  Is(50),  P-wave  velocity  test,  Schmidt
hammer  test,  to  name  a  few,  are  relatively  easier  and  quick.
These  index  tests  can  be  related  to  the  UCS  test.  Many
researchers  recommend  conventional  regression-based  equ-
ations  for  relating  rock  index  tests  to  UCS.  In  this  regard,
Momeni  et  al.  [2],  in  their  review  paper,  provided  a  comp-
rehensive list of these equations. In another study, Nazir et al.
[3] proposed a relatively reliable correlation between UCS and
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Brazilian  tensile  strength  of  rocks.  Nazir  et  al.  [4]  also
recommended  a  correlation  between  UCS  and  Schmidt
hammer  rebound  number  (SRn).  Sari  [5]  proposed  two  cor-
relations  between  UCS  and  P-wave  velocity  test  as  well  as
UCS and Schmidt hammer rebound number. In the recent past,
the  application  of  artificial  intelligence  in  geotechnical  eng-
ineering  is  underlined  in  many  studies  [6  -  20].  Other
researchers  highlighted  the  feasibility  of  soft  computing  in
solving  civil  Engineering  problems  [21  -  37].  Sometimes,  to
have a better evaluation, it is suggested to investigate the effect
of  a  number  of  parameters  on  the  parameter  of  interest.  For
example,  although  UCS  can  be  estimated  from  BTS  using
conventional correlations, some studies suggest the prediction
of UCS from multivariate equations. Nevertheless, in general,
multivariate  equations are  not  working well  enough for  non-
linear  problems  when  the  contact  nature  between  input  and
output  parameters  is  unknown.  Among  different  artificial
intelligence  techniques,  many  researchers  suggested  the
feasibility of artificial neural networks in predicting the UCS of
rocks [38].  However,  as stated in the literature,  ANN suffers
from  two  major  drawbacks  [39]:  slow  rate  of  learning  and
getting trapped in  local  minima.  Several  studies  reported the
improvement  of  ANN  by  implementing  the  optimization
algorithms  including  particle  swarm  optimization  algorithm
[40], genetic algorithm [41], and imperialist competitive algo-
rithm [42] to name a few. This paper is aimed to predict UCS
of sandstones using the PSO-based ANN model. Additionally,
the Multiple Linear Regression (MLR) was used for estimating
UCS.  Although  UCS  prediction  has  drawn  considerable
attention  in  the  literature,  presenting  new  real  datasets  from
different parts of world is always of interest as rock behavior is
site specific varies from a place to another place.

2. LITERATURE REVIEW

Numerous correlations have been proposed for estimating
UCS  in  the  literature.  In  Table  1,  the  regression-based  cor-
relations  are  tabulated  and  Table  2  presents  the  proposed
artificial intelligence-based predictive models of UCS. Among
others, Meulenkamp and Grimma [43] developed a predictive
model  of  UCS  using  ANN.  The  size  of  the  dataset  in  their
study was 194. They used Equotip value, porosity, density, and
grain  size  as  their  input  parameters.  According  to  their
conclusion, the coefficient of determination of their model was

high  enough  (R2  =  0.94).  In  another  study,  Singh  et  al.  [44]
proposed  an  ANN-based  predictive  model  of  UCS  based  on
112 datasets. They used petrography data to train and test their
model. Also, Dehghan et al. [45] recommended the feasibility
of ANN in predicting UCS. They developed the model using
30  datasets.  Their  input  data  included  Vp,  point  load  index
values,  SRn,  and  porosity.  They  reported  R2  =  0.86  and
concluded  that  their  predictive  model  is  reliable  enough.
Rezaei et al. [46] developed a Fuzzy Inference System (FIS) to
predict UCS of rocks based on 93 datasets . Their model input
consisted of porosity, SRn and density. Monjezi et al. [47] used
the same input parameters. However, Monjezi et al. utilized a
GA-based ANN model  for  developing their  model.  The reli-
ability of the predictive model of UCS proposed by Monjezi et
al. in terms of R2 was 0.96. Using 72 datasets, Beiki et al. [48]
developed  a  predictive  model  of  UCS  using  genetic  pro-
gramming.  The  input  parameters  used  in  their  study  were
density, porosity and Vp. They reported R2 equal to 0.94 as the
performance  index  of  their  model.  Yagiz  et  al.  [49]  utilized
ANN  for  developing  a  predictive  model  of  UCS  using  54
datasets  .  Their  input  parameters  were  porosity,  point  load
index value, dry unit weight, Vp, and SRn. However, according
to  their  conclusion,  their  proposed  model  was  not  reliable
enough (R2 = 0.50). Using 105 sets of data, Torabi-kaveh et al.
[50]  recommended an ANN-based predictive model  of  UCS.
Their  proposed  model  with  R2  =  0.95  was  highly  reliable.
Similar  to  the  aforementioned  works,  they  used  density,
porosity and Vp as the model inputs. Yesiloglu-Gultekin et al.
[51] implemented an Adaptive Neuro-fuzzy Inference System
(ANFIS)  for  UCS  prediction.  They  used  Brazilian  tensile
strength and Vp as the model inputs. The size of the dataset in
their study was 75. The reported R2 in their study was 0.60. In
another  study,  Abdi  et  al.  [38]  predicted  the  UCS  of  sedi-
mentary rocks using ANN. In order to train their model, they
collected  196  different  types  of  rock  specimens  including
limestone, conglomerate, sandstone, and marl. The input para-
meters  of  their  suggested  model  were  dry  unit  weight,  Vp,
porosity, and water absorption. The correlation coefficient, R,
of their proposed model for testing data was 0.93. Overall, the
aforementioned studies, as well as studies highlighted in Table
2,  indicate  the  workability  of  artificial  intelligence  more
especially artificial neural network in predicting UCS of rock
using  different  rock  engineering  properties  as  well  as  rock
index tests.

Table 1. Proposed correlations between UCS and Rock index tests.

Reference Correlation Reliability Rock Type
Kahraman et al. [52] UCS = 10.61BTS R2 = 0.54 Different rock types including limestone

Sari [5] UCS = 4.969exp(0.058RL) R2 = 0.575 Different rock types

Sari [5] UCS = 5.912VP
1.741 R2 = 0.645 Different rock types

Altindag and Guney [53] UCS = 12.38BTS1.0725 R = 0.9 Different rock types including limestone
Gokceoglu and Zorlu [54] UCS = 6.8BTS +13.5 R = 0.65 -

Nazir et al. [3] UCS = 9.25BTS0.947 R2 = 0.90 20 Limestone samples
Karaman et al. [55] UCS = 24.301+4.874BTS R2 = 0.90 37 Rock samples including Basalt and limestone

Broch and Franklin [56] UCS = 23.7 Is(50) - -
Bieniawski [57] UCS = 23 Is(50) - Different type of rocks

Kahraman et al. [58] UCS = 10.22 Is(50) + 24.31 R2 = 0.75 38 Different rock samples
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Reference Correlation Reliability Rock Type
Basu and Aydin [59] UCS = 18 Is(50) R2 = 0.97 40 Granitic rock samples

Yilmaz and Yuksek [60] UCS = 12.4 Is(50) - 9.0859 R2 = 0.81 39 Sets of gypsum samples
Diamantis et al. [61] UCS = 19.79 Is(50) R2 = 0.74 32 Samples of serpentinite rock

Kahraman [62] UCS = 14.68Is(50) − 8.67 R = 0.88 32 Pyroclastic specimens
Sarkar et al. [63] UCS=0.038Vp-50 R2=0.93 13types of different rock

Kilic and Teymen [64] UCS=0.0137RL2.2721 R= 0.93 Different rock types
Cobanoglu and Selik [65] UCS=6.59 RL -212.6 R= 0.65 Limestone, sandstone, cement mortar

Tugrul and Zarif [66] UCS=8.36 RL -416 R= 0.87 19 Granite rock samples
Nazir et al. [4] UCS=12.83 e(0.0487 RL) R = 0.95 20 Limestone samples

Aydin and Basu [67] UCS=1.4459e0.0706 RL R = 0.92 Granitic rocks
Gupta [68] UCS=1.15 RL -15 R = 0.95 Granite

Sharma and Singh [69] UCS = 0.0642VP – 117.99 R2 = 0.90 49 samples in different rock types
Moradian and Behnia [70] UCS=165.05e(- .452/Vp) R2 = 0.7 64 different rock samples

Khandelwal [71] UCS = 0.033 VP – 34.83 R2 = 0.87 12 samples of a wide rock types
Diamantis et al. [61] UCS=0.11 VP - 515.56 R2 = 0.81 32 samples of serpentinite rock

Altindag [72] UCS = 12.743 VP1.194 R = 0.76 97 rock specimens (mainly limestone)
   Cobanoglu and Celik [65] UCS=56.71 VP - 192.93 R2 = 0.67 150 core samples of different rocks

   Xu et al. [73] UCS=2.98 e(0.06 RL) R = 0.95 Mica-schist
Jamshidi et al. [74] UCS=133.77 Ln Vp-1048 R= 0.90 Limestone
Entwisle et al. [75] UCS= 0.78 e 0.88VP R2 = 0.53 171 samples of Volcanic rock

*BTS: Brazilian Tensile Strength, Vp:P-wave velocity, Is(50): Point load index value, RL: Schmidt hammer rebound number.

Table 2. The intelligent-based predictive models of UCS reported in the literature (after Momeni et al. [2]).

Reference Technique Dataset Number Input Layer R2

Verma and singh [76] ANFIS - R, W, ρ, BTS, Vp 0.763
Singh et al. [77] ANFIS 85 ρ, Is(50), WA 0.664
Rezaei et al. [78] ANFIS 93 Rn, n, ρ 0.97
Saedi et al. [79] ANFIS 120 CPI, Is(50), BTS, BPI 0.854

Rabbani et al. [80] ANN - n, BD, Sw 0.96
Sharma et al. [81] ANFIS 94 γd, Vp, SDI 0.978
Ceryan et al. [82] ANN 55 n, Id, Vm, ne, PSV 0.88
Zorlu et al. [83] ANN 138 q, pd, cc 0.76

Yilmaz and Yuksek [60] ANFIS 121 Vp, Is(50), SRn, WC 0.94
Jahanbakhshi et al. [84] ANN 133 ρ, n, Vp 0.96
Majidi and Rezaei [85] ANN 93 R, Rn, n, ρ 0.97

Sarkar et al. [86] ANN 40 Vp, Is(50), Id, ρ 0.99
Fang et al. [87] ANN-GP-PSO-ICA 71 SRn,Vp, Is(50),n -

Momeni et al. [40] PSO-ANN 66 SRn,Vp, Is(50), ρ 0.95
Mishra and Basu [88] FIS 60 Vp, Is(50), BPI, SRn 0.98

Tonnizam Mohamad et al. [39] ANN-PSO 40 Is(50), BD, Vp, BTS 0.97
Jahed Armaghani et al. [89] ANFIS 45 Vp, ρ, PSV 0.98
Jahed Armaghani et al. [42] ICA-ANN 71 n, Vp, SRn, Is(50) 0.92

Tonnizam Mohamad et al. [90] PSO-ANN 38 Id, d, Is(50),Vp,WC 0.98
*BD: Bulk Density; BPI: Block Punch Index; d: Grain size; GA: Genetic Algorithm; ICA: Imperialist Competitive Algorithm; Id: slake durability index; L: Equotip value;
n: porosity; ne: effective porosity; PSV: Petrography Study Values; SRn: Schmidt hammer rebound number; Sw: water saturation, Vm: P-wave velocity in the solid part of
the sample; Vp: P-wave velocity; WC: Water Content; γd: dry unit weight; ρ:density; Is(50): Point load index value

3. MATERIALS AND METHODS

3.1. Artificial Neural Network

Artificial  Neural  Network (ANN) can be seen as a black
box  which  is  utilized  when  there  is  a  highly  nonlinear

relationship  between  input  and  output  of  a  model.  The  term
black  box  sometimes  is  given  to  the  ANN  because  unlike
regression-based  techniques,  there  is  no  specific  formula  for
estimating  the  parameter  of  interest.  Multilayer  Perceptron
(MLP) is the most common type of ANNS for both estimation
and  class-ification  problems  [91  -  95].  The  structure  of  the

(Table 1) cont.....
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MLP network includes input, hidden and output layers. There
is no specific approach for determining the number of hidden
layers  as  well  as  the  number  of  hidden  nodes  .  However,
almost  in  most  civil  engineering  problems,  the  use  of  one
hidden layer is good enough. It is due to the fact that in civil
engineering problems, collecting experimental data for training
the ANN-based predictive models is difficult. In other words,
when the size of dataset is small, implementation of more than
one  hidden  layer  can  increase  the  likelihood  of  the  model
overtraining  and  overfitting.  Nevertheless,  the  input,  hidden
and  output  layers  are  connected  to  each  other  using  hidden
nodes or neurons. That is the input parameters are connected to
hidden  nodes  in  the  hidden  layer  and  the  aforementioned
hidden  nodes  are  connected  to  the  model  output.  Each  con-
nection has a weight. Depending on the training algorithm, the
weight  of  each  connection  is  determined.  One  of  the  most
famous  training  algorithms  is  backpropagation  technique.  In
this method, the network starts to feed forward. In the hidden
layer, to have a hidden node output value, a transfer function is
applied  to  the  input  values  of  each  hidden  node.  The  input
value  of  each  hidden  nodes  is  simply  determined  by  the
summation of connection weights of that hidden node as well
as  a  threshold  value  known as  bias.  This  process  is  repeated
between the hidden layer and the output layer and the value of
the  output  parameter  is  predicted.  The  predicted  output  is
compared  with  the  target  (already  known)  and  the  error  is
estimated.  The  network  has  to  backpropagate  and  update  its
weights  (if  the  error  is  not  desirable).  In  the  hybrid  ANNs,
instead  of  conventional  methods,  the  weights  are  optimized
using  optimization  algorithms.  Detail  of  ANNs  is  out  of  the
scope of this paper and readers are referred to other studies to
get more detail [9].

3.2. Particle Swarm Optimization

Particle Swarm Optimization was originally proposed by
Eberhart  and  Kennedy  [96].  Several  studies  have  been  con-
ducted on the efficiency of PSO in achieving optimal solutions
in large search spaces, e.g., the study by Mendes et al. [97]. In
this  regard,  a  primary  advantage  of  PSO  is  the  simple
evolutionary  process  that  distinguishes  it  from  other
optimization algorithms. Victoire and Jeyakumar [98] showed
that  PSO  is  an  effective  computational  tool  that  cuts  the
required  amount  of  memory  in  comparison  to  other  similar
algorithms. PSO works with two simple equations.

(1)

(2)

In Eqs. 1 and 2, vnew, v, pnew, and p denote the new velocity,
current  velocity,  new position,  and  current  position,  respect-
ively, for a given particle among a set of particles. Also, C1 and
C2 show acceleration constants; pbest indicates the best position
of a particle and gbest stands for the best position of the particles
in the set; r1 and r2 are arbitrary values in the range of 0 to 1.

PSO  optimization  is  initiated  by  randomly  selecting  some
particles.  In  the  current  context,  it  starts  with  initializing the
ANN weights. A random velocity and position are assigned to
each particle (i.e., ANN weight). Next, an iterative process is
employed to seek the optimum solution by recording the Pbest

and  gbest  values  of  each  particle  during  each  interaction.
Afterward, using Eqs. 1 and 2, the changes in the positions of
the particles with respect to their experiences and the position
of the other particles are determined [99]. These positions are
updated until reaching a predefined “termination criterion” or
the optimum solution [100].

3.3. PSO-based ANN

To  enhance  the  efficiency  of  ANNs,  often  optimization
algorithms  like  PSO  are  implemented.  This  is  generally  att-
ributed to the shortcomings of ANNs in getting trapped in local
minima.  The problem can be solved if  ANN is  coupled with
global  search  algorithms  like  PSO.  The  PSO  component  of
such a hybrid system enables it to find a global minimum while
searching.  Accordingly,  a  hybrid  PSO-based  ANN  model
enjoys the benefits of both PSO and ANN; PSO searches for
the entire minima in the search space and ANN then employs
them to obtain the best solution. It is worth mentioning that in
the hybrid system, the ANN weights are optimized using PSO.
Each particle of PSO consists of the ANN weights. When the
number of iterations is reached in PSO, the algorithm returns
the  best  solution  (Gbest)  which  contains  the  whole  ANN
weights. The obtained weights are applied to train the network.

4. DATASET

One  of  the  key  steps  in  network  designing  is  data  coll-
ection.  For  this  purpose,  10  sandstone  blocks  were  selected
from  different  locations  in  Central  Iran  and  Sanandaj-Sirjan
zones  (Fig.  1).  These  sandstones  belong  to  the  upper  red
formation  in  southwest  Qom  and  northeast  Hamedan,  and
Jurassic sandstones in the east of Hamedan. Then, the collected
blocks  were  cored  in  the  laboratory  to  prepare  core  samples
with NX size (54.1 mm diameter) based on the ISRM [1]. To
develop  the  ANN  model,  different  engineering  properties
(physical or mechanical) of 60 sandstone samples such as UCS,
Schmidt hardness, P-wave velocity, porosity, and dry density
were  determined  according  to  the  ISRM  [1].  The  study  by
Momeni et al. [9] shows that there should be a good correlation
between the input parameters and the model output. Hence, in
this study, apart from UCS, other properties (which are related
to  UCS)  were  set  as  model  inputs  based  on  an  extensive
literature review (Tables 1 and 2). The results of the laboratory
tests of selected samples are listed in Table 3. As presented in
this table, the porosity values of studied sandstones range from
2.19  to  14.51%.  The  P-wave  velocity  of  samples  varies
between  1.09  and  5.38  km/sec.  The  results  for  dry  density
show that γd range from 2.04 to 2.94 gr/cm3. Also, the Schmidt
hardness number for selected sandstones varies between 23 and
46. The results of this work indicate that the UCS values range
from 29.94 to 143 MPa.

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗       (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗ )       (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗ )     

 

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
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Fig. (1). Map of sampling points.

Table 3. The physical, index and strength properties of the sandstone samples.

Sample No. Porosity
(%)

P-wave Velocity (km/sec) Dry Density
(gr/cm3)

Schmidt Hardness UCS
(MPa)

1 12.32 2.01 2.14 32 35
2 13.94 1.78 2.12 29 31
3 6.94 2.31 2.54 44 59.22
4 6.91 4.22 2.76 45 96.11
5 2.54 5.32 2.93 45 132.02
6 3.57 4.53 2.82 42 115
7 3.5 4.34 2.81 30 111.13
8 11.9 1.21 2.12 30 33
9 14.5 1.42 2.21 43 36
10 7.3 2.78 2.63 43 66.7
11 3.23 4.87 2.83 33 119.4
12 5.60 2.62 2.49 34 67.52
13 4.01 4.87 2.86 39 116.68
14 7.89 2.34 2.46 27 46.32
15 14.51 1.09 2.15 38 29.94
16 2.71 5.21 2.89 30 127.12
17 7.90 2.21 2.46 46 42.21
18 2.19 5.38 2.94 28 143
19 5.81 3.73 2.66 38 86.93
20 13.2 1.32 2.17 44 34.5
21 6.26 3.81 2.66 26 92.61
22 12.57 1.22 2.04 39 30.38
23 7.13 3.37 2.67 39 84.58
24 9.18 2.51 2.6 44 68.63
25 12.24 1.91 2.54 35 44.82
26 5.81 4.30 2.68 26 89.42
27 7.48 3.19 2.65 44 82.71
28 4.71 4.72 2.81 43 106.68
29 10.11 2.29 2.6 40 60.83
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Sample No. Porosity
(%)

P-wave Velocity (km/sec) Dry Density
(gr/cm3)

Schmidt Hardness UCS
(MPa)

30 6.73 4.04 2.72 32 90.8
31 5.61 4.37 2.77 29 99.48
32 4.64 4.65 2.87 44 112.13
33 7.48 2.83 2.57 45 69.97
34 3.28 4.76 2.84 42 114.22
35 4.58 4.96 2.14 30 110.75
36 6.27 4.45 2.76 40 95.06
37 2.65 4.23 2.85 23 130.21
38 6.29 4.41 2.73 32 94.78
39 7.62 3.25 2.67 32 82.57
40 8.26 2.66 2.6 29 78.2
41 6.33 3.15 2.69 28 82.77
42 8.9 2.48 2.58 31 75.23
43 13.23 1.74 2.51 32 38.32
44 11.25 2.08 2.57 33 51.32
45 7.53 2.98 2.7 26 89.47
46 8.42 2.34 2.61 40 64.21
47 10.11 1.94 2.48 42 44.8
48 9.01 2.07 2.69 35 49.28
49 7.71 2.42 2.55 34 53.76
50 10.61 1.72 2.54 43 40.32
51 9.11 1.8 2.56 42 42.56
52 7.81 2.56 2.74 40 56
53 7.41 2.82 2.76 33 60.48
54 9.21 2.35 2.67 44 44.64
55 7.71 2.99 2.76 43 63.36
56 6.96 3.18 2.78 45 65.2
57 9.72 2.04 2.69 37 47.36
58 9.18 2.15 2.69 41 49.12
59 7.15 2.28 2.62 34 51.36
60 6.73 2.36 2.6 35 53.6

Fig. (2). The effect of the number of iterations on the prediction performance of the PSO-based predictive model of UCS.

(Table 3) cont.....
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5. MODELLING PROCEDURE

The  modelling  procedure  of  the  PSO-based  ANN  pre-
dictive  model  starts  with  data  normalization  and  sensitivity
analysis. In fact, one may perform different sensitivity analyses
in order to obtain the proper PSO parameters. In this study, the
number of iterations was set to be the termination criterion for
the hybrid model. For this reason, using a sensitivity analysis,
firstly,  the  number  of  iterations  was  set  to  400  and  then  the
prediction performance of the model was evaluated using mean
square  error.  Fig.  (2)  shows  the  effect  of  the  number  of
iterations on the model response. As shown in this model, after
nearly 50 iterations there is no significant change on the MSE;
therefore, the maximum number of iterations was set to be 50.
The  values  of  C1  and  C2  were  set  to  be  2  according  to  the
literature. The study by Tonnizam Mohamad et al. [39] recom-
mends that the swarm size does not have a remarkable effect
on  the  model  performance;  hence  the  number  of  particles  in
this study was set to 200.

After  proper  determination  of  the  PSO  parameters,  the
structure  of  the  main  ANN  model  (i.e.  number  of  hidden
nodes)  has to be configured.  In this  regard,  two methods are
recommended in the literature. Some studies recommend using
a trial and error procedure for determining the proper number
of hidden nodes. On the other hand, some studies suggest the
implementation  of  a  number  of  equations  for  hidden  node
determination.  These  equations  are  related  to  the  number  of
inputs  and  output(s).  In  this  study,  based  on  the  authors'
experience,  the  trial-and-error  method  was  implemented.  In
other  words,  the  models  were  trained  and  tested  with  three,
four  and  five  hidden  nodes,  respectively  and  the  prediction
performances  were  evaluated  based  on  R2  as  well  as  Root
Mean Square Error (RMSE).

It  is  worth  mentioning  that  each  model  was  trained  and
tested five times. Since increasing the number of hidden nodes
can lead to model complexity, in this study, a maximum of five
hidden  nodes  in  a  hidden  layer  were  used  for  training  the
model. It should also be mentioned that 80 percent of the data
was used for training the model and the remaining 20% of the
data was set for testing the model performance.

Table  4  shows  the  results  of  the  implemented  trial  and
error procedure for determining the best network architecture.
It is worth mentioning that the prediction performance of the
testing  data  was  considered  as  the  main  criterion  for  the
selection of the best model. Table 4 shows that the prediction
performances  of  all  models  are  close  to  each  other  meaning
that  the  likelihood  of  accidental  good  results  is  negligible.
When results for different hidden nodes are close to each other,
to have a less complex model, one may select the model with
the lowest  hidden node more especially when the size of the
dataset  is  not  large.  Hence,  in  this  study,  the  5th  PSO-based
ANN  predictive  model  of  UCS  with  three  hidden  nodes  is
selected as the best model.

6. RESULTS AND DISCUSSION

Figs. (3-5) indicate the reliability of the constructed PSO-
based ANN model. Fig. (3) plots the predicted UCS values (in
the training step) versus the measured UCS values in the lab-
oratory.  As  shown  in  this  figure,  the  coefficient  of  deter-
mination  of  the  model  for  the  training  step  is  0.941  which
suggests  the  reliability  of  the  model.  As demonstrated in
Fig. (4), the estimated UCS using the PSO-based ANN model
for  testing  data  is  close  to  the  measured  UCS  (R2=0.974),
which indicates the relatively high reliability of the constructed
network. As mentioned before, the coefficient of determination
of  more  than  0.9  indicates  that  the  predicted  and  measured
values  are  in  good  agreement.  Hence,  based  on  the  afore-
mentioned  results  the  predictive  model  of  UCS  is  a  feasible
tool  in  predicting  the  UCS.  It  should  be  highlighted  that
implementations  of  such  low-  cost  predictive  models  are
simple  and  quick  compared  to  direct  or  indirect  methods  of
UCS estimation. However, the model should not be generalized
when  the  estimated  range  of  geomechanical  properties  are
beyond the range of the presented data in Table 3. The proper
prediction  performance  of  the  PSO-based  ANN technique  to
estimate  the  UCS  during  training  and  testing  steps  is  also
shown  in  Fig.  (5)  for  both  training  and  testing  data.  As
displayed  in  this  figure,  the  predicted  UCS  values  using  the
constructed network are close to the measured values,  which
indicate the reliability of the proposed PSO-based ANN model.

Table 4. The effect of the hidden nodes on the prediction performance of the PSO-based ANN predictive model.

Number of Nodes 3 4 5

Model Number
R2 RMSE R2 RMSE R2 RMSE

Test Train Test Train Test Train Test Train Test Train Test Train
I 0.964 0.948 0.467 0.109 0.96 0.942 0.38 0.387 0.98 0.944 0.469 0.114
II 0.90 0.946 0.469 0.122 0.98 0.94 0.007 0.130 0.91 0.96 0.146 0.110
III 0.980 0.942 0.140 0.114 0.964 0.944 0.08 0.130 0.97 0.946 0.100 0.122
IV 0.946 0.948 0.109 0.126 0.946 0.952 0.126 0.114 0.98 0.942 0.086 0.119
V 0.974 0.941 0.089 0. 126 0.904 0.940 0.14 0.13 0.976 0.947 0.097 0.119
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Fig. (3). Correlation between predicted and measured UCS values (training stage).

Fig. (4). Correlation between predicted and measured UCS values (testing stage).
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Fig. (5). Comparison between predicted and measured UCS using the PSO-based ANN model a) Training Data b) Testing Data.

Fig. (6). Correlation between predicted and measured UCS values from MLR technique a) training step; b) testing step.
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In  this  study,  for  comparison  purposes,  Multiple  Linear
Regression  (MLR)  method  is  also  implemented  for  the  pre-
diction of UCS. Same dataset and input parameters were used
in the MLR-based predictive model. To produce a multivariate
equation,  the  statistical  software  package  SPSS23  was  used.
Lastly,  the  best  obtained  multivariate  regression  equation  is
suggested for UCS estimation (Eq. 3).

(3)

Fig.  (6)  shows  the  correlations  between  the  estimated
values of the UCS using MLR method (Eq. 3) and the observed
values in the laboratory for both training and testing data. On
the  basis  of  the  results,  the  R2  between  the  predicted  and
observed  UCS  for  training  and  testing  steps  are  0.940  and
0.966, respectively. Hence, it can be concluded that the MLR is
also  capable  of  forecasting  UCS  with  acceptable  precision.
However, the use of the PSO-based ANN predictive model of
UCS is more preferable.

As mentioned earlier,  the prediction performances of the
developed  models  were  assessed  using  different  standard
statistical  indices  including  the  R2,  and  Root  Mean  Square
Error  (RMSE).  At  the  final  stage,  Variance  Accounts  For
(VAF) was also utilized for comparing both predictive models.
The aforementioned performance indices were calculated using
the following equations:

(4)

(5)

(6)

Table 5. The obtained values of the R2, RMSE, and VAF
for the PSO-based ANN and MLR models.

Proposed Model Model
Reliability - - -

- R2 R2 RMSE RMSE

- (training
data)

(testing
data)

(training
data)

(testing
data)

MLR-based
Predictive model

of UCS
0.931 0.966 0.106 0.094

PSO-based
Predictive model

of UCS
0.941 0.974 0.126 0.089

Where  Xi  and  Yi  are  the  observed  and  predicted  data,
respectively;   and   are  mean  of  the  measured  and  pre-
dicted data, and n is the number of data points. As previously
mentioned, in theory, an estimation model is excellent when R2

is  1,  RMSE is equal to 0 and VAF is 100. The values of the
aforementioned statistical indices are tabulated in Table 5. The
performance indices values shown in this table suggest that the

PSO-based ANN model outperforms the MLR-based predictive
model  of  UCS;  therefore,  this  study  recommends  the
implementation  of  the  PSO-based  predictive  model  as  a
feasible tool for estimation of UCS. However, further research
is suggested for model generalization.

CONCLUSION

In this study, using 60 datasets, two predictive models of
UCS  were  proposed.  Porosity,  P-wave  velocity,  dry  density
and  Schmidt  hardness  number  were  set  to  be  model  inputs.
Based  on  the  results,  it  was  concluded  that  the  PSO-based
ANN model with three hidden nodes performs good enough in
assessing  the  UCS  of  sandstone.  A  comparison  between  the
prediction  performance  of  the  intelligent-based  predictive
model and MLR-based predictive model showed that the PSO-
based  ANN  model  outperforms  the  MLR-based  predictive
model.  However,  it  should  be  highlighted  that  the  proposed
predictive models work well enough when the future data are
in the range of the data presented in Table 3. Further research
with  the  larger  dataset  is  recommended  for  overcoming  the
aforementioned limitation.
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