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Abstract:

Background:

In this paper, geometric nonlinear analysis of pitched roof frames was carried out by the stiffness matrix method using stability
functions.

Objective:

This study contributes to a better knowledge of the stability of pitched roof frames, not braced, and therefore of the efficiency in their
dimensioning.

Method:

At first, the argument of the stability functions was set as 0.01. The stiffness matrix of the frame has been assembled, as well as the
nodal  load  vector  of  the  frame.  The  boundary  conditions  (support  restraint  and  wind  bracing  restraint)  were  introduced  for  the
reduction of this matrix and the nodal load vector. At this stage, the determinant of the reduced stiffness matrix and the reduced nodal
displacement vector are calculated. The argument of the stability functions is incremented by 0.01 and the operations are repeated
until the determinant of the reduced stiffness matrix changes sign. The argument of the iteration preceding the sign change of the
determinant and corresponding to its positive value is taken and refined by a process described in the paper. The buckling loads of
the frame members are determined at this stage.

Results and Conclusion:

The analysis focused on four frames; the obtained results show that the increase in the inclination of the crossbar makes it possible to
take full advantage of the “arch effect”. Arch effect is due to the presence of crossbars which have a linear arch shape. Furthermore,
the angle as well as the length ratio, between the crossbar and post, influence critical load value.

Keywords: Geometric nonlinear analysis, Stiffness matrix method, Stability functions, Determinant, Buckling load, Pitched roof.

1. INTRODUCTION

The geometric nonlinear analysis of pitched roof frames will be made by the stiffness matrix method using stability
functions. Geometric nonlinear analysis of frames is a problem of elastic instability. Although the structure is in the
elastic  range,  the  effects  of  large  displacements  (large  deformations)  modify  the  geometry  of  the  structure;  which
renders  inapplicable  the  theory  of  linear  elasticity.  Examples  of  these  phenomena  of  instability  are  buckling,  local
buckling and lateral buckling [1].

Stability analysis in solid mechanics began with Euler's solution of buckling of an elastic column (Euler, 1744).
Most basic linear elastic problems of structural stability were solved by the end of the 19th century, although further
solutions  have  been  appearing  as  new  structural  types  were being introduced. The twentieth century has witnessed
a great expansion of the stability theory into nonlinear behavior, caused either by large deflections or by nonlinearity of
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the constitutive law of the material [2].

The  pitched  roof  frame  type  shown  in  Fig.  (1)  is  probably  the  structural  solution  most  often  used  in  steel
construction, especially for buildings used for industrial, agricultural or sports purposes [3, 4]. The use of pitched roofs
naturally leads to the construction of long-span frames (it is quite common to find frames with span-to-height ratios
greater  than  10).  This  is  mainly  due  to  the  fact  that  the  inclination  of  the  cross  member  makes  it  possible  to  take
advantage of an “Arch Effect” [5], which noticeably increases the rigidity of the roof and makes possible the transfer of
rather high loads with crossbars relatively slender. However, the crossbars can be subjected to significant axial forces
(of the same order of magnitude, if not greater, to the forces in the posts [5]), which has a significant influence on the
stability  and  the  nonlinear  behavior  of  the  frames.  This  influence  is  often  overlooked,  especially  because  of  the
traditional reasoning that, because of the relatively low compressive forces present in the posts, one-storey frames are
only marginally susceptible to problems of instability [6]. This erroneous notion seems to be confirmed by the fact that
most codes relating to metallic structures, in particular, Eurocode 3 [7], contain, so to speak, almost no reference to this
phenomenon, which is, however, particularly important.

Fig. (1). Categories of structures studied.

Arches carry most of their loads by developing compressive stresses within the arch itself and therefore in the past
were frequently constructed using materials of high compressive strength and low tensile strength such as masonry. In
addition to bridges, arches are used to support roofs. They may be constructed in a variety of geometries; they may be
semicircular, parabolic or even linear where the members comprising the arch are straight. Today arches are usually
made of steel or of reinforced or prestressed concrete and can support both tensile as well as compressive loads. They
are used to support bridge decks and roofs and vary in span from a few metres in a roof support system to several
hundred metres in bridges.

Previous  research  on  the  stability  of  pitched  roof  frames  used  analytical  approaches.  As  can  be  seen  from  the
literature, very few analytical studies have been conducted on the stability of this type of frame. This is in part due to
the mathematical difficulties that may be involved in the solution of the associated boundary-value problem, imagine
that  we are  faced with  the  problem of  solving a  large set  of  simultaneous differential  equations  along with  a  large
number of continuity conditions and boundary conditions. It is true that the mathematical difficulties encountered in the
analytical  study  of  pitched  roof  frames  can  be  greatly  eased  through  the  use  of  numerical  approaches,  such  as  the
stiffness matrix method, along with the support of modern high-performance computers.

The aim of the study is to find the critical loads of the frame members. The determinant of the reduced stiffness
matrix of the frame, as well as the argument of the stability functions, are used to determine these critical loads. A
computer program is used to carry out the various operations.



284   The Open Construction and Building Technology Journal, 2018, Volume 12 Bocovo et al.

2. GEOMETRY, LOADING AND SUPPORT CONDITIONS

This paper is devoted to calculating the critical load of pitched roof frames made up of straight members. The posts
of the frame, which are vertical, rise continuously from the foundation to the top of the structure. The posts of the first
storey can be of different lengths. The crossbars make an angle α with the horizontal. The bars are connected to the
nodes, which are considered non-deformable, by rigid assemblies. The feet of the posts are fixed in a rigid manner to
the foundation.

The external forces considered in the present study are such that, before the loss of stability, the members undergo
only axial compression (or traction). For example, Fig. (1) shows such a system of forces. Here, the loads are only
concentrated loads applied to the nodes, acting in the axes of the posts and crossbars.

To make the analysis of frames easier and systematic, it is useful to introduce some non-dimensional parameters
Table 1 concerning the geometry, the loading and the support conditions (stiffness of the posts feet). These parameters
are as follows:

Table 1. Non-dimensional parameters.

α
Unbraced Frames

RI RL S RN

6° 1
2

0 0,59
0,95

3
0 0,86

1,45

12° 1
2

0 0,59
0,93

3
0 0,82

1,30

They reflect on the one hand, the ratios that exist between the inertias (RI), the lengths (RL), the axial forces (RN) of
the  posts  and  crossbars  and,  on  the  other  hand,  the  relative  stiffness  of  the  posts  feet,  calculated  in  relation  to  the
characteristics of the posts themselves (S) [8].

(1)

3. ASSUMPTIONS

This study is based on the following assumptions:

The materials that make up the bars are supposed to be perfectly elastic.
The nodes are supposed to be rigid.
Forces are expected to maintain their original direction and initial point of the application during buckling.
In addition, the external forces are such that, before the loss of stability, the bars undergo only an axial force
(compression or traction).
Deformations (in the displaced state) are considered small.
The case of buckling studied is that of bending buckling in the plane of the frame. It is assumed that the spatial
buckling accompanied by twisting and local buckling of the walls is prevented.
Secondary bending effects are neglected.

In addition, the elastic length variations due to axial forces are neglected. All the nodes of a crossbar thus have the
same transverse displacement.

4. STABILITY STUDY

Nonlinear analysis of structures can be formulated using Fig. (2) and Equation 2.
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Fig. (2). Displaced position and degrees of freedom (d.o.f.) of a member.

The stiffness matrix ([ki] in local coordinate system) and that of rotation transformation, [Ti], of a member << i >>
are modified during the increase of the axial load. However, in this study, [Ti] is assumed unaffected.

(2)

Where:

{fi} is the nodal load vector of the member; Pi, Vi and Mi respectively represent axial force, shear force and bending
moment at node i.

{di} is the vector of nodal deformations of the member; ui, vi and θi respectively represent axial displacement, lateral
displacement and rotation at node i.
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E is YOUNG’s modulus of elasticity of the member material, A, the cross-sectional area of a member, I, the moment
of inertia of a section, L, the length of a member; φ(υ) and η(υ) are the stability functions.

The stability functions [9] of the members (equation 3) cannot be calculated because the axial forces acting on them
are unknown. An iterative method is used to overcome this difficulty. One starts by calculating these functions using as
load argument υ = 0.01.

The following steps should be implemented for the linear analysis of the stability of a frame:

Step 1 Idealize the structure and establish global axes,
Step 2 Number the nodes (A, B, C, D, ...) and the degrees of freedom (d.o.f.) of the structure (0 for inactive
d.o.f., and 1, 2, 3, 4, 5, 6, 7, …, for the others),
Step 3 Number the members and assign an arrow to each member so that ends i and j are defined,
Step 4 Enter the geometric characteristics (area, inertia, length) of each member and its orientation angle, θ, as
well as the mechanical properties of the materials (YOUNG’s modulus, COULOMB’s modulus),

(3)

Step 5 Initialize the argument υ to 0.01 and the iterations counter << Count. >> to 1,
Step 6  Enter the expressions of the stability functions and form the stiffness matrix, [ki], and the nodal load
vector, {fi}, of each member in the local coordinate system; for uncompressed members,

(4)

Step 7 Form the rotation transformation matrix, [Ti], of each member and calculate its stiffness matrix, [Ki], and
its nodal load vector, {Fi}, in the global coordinate system,

(5)

(6)
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Step 8 Assemble the stiffness matrix, [K], and the nodal load vector, {F}, of the structure,
Step 9  Form the reduced stiffness matrix,  [Kr],  and the reduced nodal  load vector,  {Fr},  of  the structure by
ignoring  the  rows  and  columns  corresponding  to  inactive  d.o.f.  (restraint  of  supports  and  restraint  of  wind
bracing) and of zero order number << 0 >>,
Step 10 Calculate the reduced nodal deformation vector, {Dr}, of the structure:

(7)

Step 11 Calculate the determinant of the reduced stiffness matrix, │Kr│,

If │Kr│ sign changes, go to step 12
If not, increment υ and Count., and return to step 6:

(8)

Step 12 Continue the calculations with the penultimate value of the argument υ, with a small increment (0.001)
to  improve  the  accuracy  in  determining  the  critical  argument,  υcr,  and  therefore,  the  critical  load,  Pcr;  stop
operations as soon as │Kr│ changes sign, and take υ for which │Kr│> 0, as critical argument, υcr.

5. FLOWCHART OF THE COMPUTER PROGRAM

The algorithm required for the linear analysis of stability of pitched roof frames (by stiffness matrix method) is
represented in the form of a flowchart Fig. (3) showing the important tasks to be performed.

Fig. (3). Flowchart of linear analysis of the stability of a frame.

Does │Kr│ 
change its sign? 

STOP

No

Yes 

Calculate the stability functions of each member, ϕ(υ) 
and η(υ). 

For uncompressed members, ϕ(υ) = 1 = η(υ).  

Calculate the stiffness matrix, [ki], and the nodal load 
vector, {fi}, of each member in the local coordinate 

system. 

Assemble the stiffness matrix, [K], and the nodal load 
vector, {F}, of the structure. 

Introduce the boundary conditions to reduce [K] and 
{F}, and get [Kr] and {Fr}.  

Calculate nodal displacements, {Dr}. 

Calculate the determinant value, │Kr│. 

Increment υ and 
Count.  

υ = υ + 0.01 and 
Count. = Count. + 1 

START

Input: geometric characteristics of 
members and mechanical properties of 

materials. 

υ = 0.01 and Count. = 1 

         1.r r rD K F

   0 1. ..01 Count Coua ntnd        
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This  algorithm  is  based  on  the  stiffness  matrix  method.  The  data  input  of  the  program  is  the  geometric
characteristics of members and mechanical properties of materials. The displacements, the determinant and the axial
forces of the members will be determined for each argument υ, until │Kr│ changed sign.

6. NUMERICAL EXAMPLES

6.1. Example 1

Let's start with a digital application for a basic construction. Let us study the stability of the simple symmetrical
frame and symmetrically loaded shown in Fig. (1a) for the numerical values: Lp = 4.00 m, α = 6°, Lb = 8.00 m, A = 331
cm2, Ip = Ib = 18 260 cm4, E = 21 000 kN/cm2, Np = 1 000 kN.

The following Table 2 presents the computation of the determinant │Kr│ and the nodal displacements {Dr} of the
frame, for increasing values of υ:

Table 2. Determinant and nodal displacements of the frame 1.

No. υ Load Np

(kN)
│Kr│

Nodal Displacements {Dr} of the Frame
d.o.f.

u (mm) v (mm) θ (rad)

1 0.01 2.40E-01 4.44009E+35

Node A - - -
Node B 2.9425E-04 -1.3782E-04 -1.0193E-07
Node C 1.1346E-04 -9.1727E-04 -1.1343E-07
Node D -6.7393E-05 -1.3801E-04 -1.1502E-08
Node E - - -

2 0.02 9.59E-01 4.43601E+35

Node A - - -
Node B 1.1771E-03 -5.5129E-04 -4.0781E-07
Node C 4.5416E-04 -3.6711E-03 -4.5402E-07
Node D -2.6903E-04 -5.5204E-04 -4.6216E-08
Node E - - -

. - - -

Node A - - -
Node B - - -
Node C - - -
Node D - - -
Node E - - -

. - - -

Node A - - -
Node B - - -
Node C - - -
Node D - - -
Node E - - -

68 0.633 9.60E+02 1.78121E+32

Node A - - -
Node B 2.8593E+02 -8.3989E-01 -2.6501E-01
Node C 8.4185E+02 -5.3205E+03 -8.1034E-01
Node D 1.3979E+03 -2.6533E-01 -5.4862E-01
Node E - - -

69 0.634 9.63E+02 -9.20937E+32

Node A - - -
Node B -5.4193E+01 -4.9804E-01 5.1043E-02
Node C -1.6317E+02 1.0303E+03 1.5705E-01
Node D -2.7219E+02 -6.1068E-01 1.0665E-01
Node E - - -

The reduced stiffness matrix of the frame, [Kr], is a function of the load because of the geometrical non-linearity;
this is used as a stability criterion:
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(9)

The following Table 3 presents the calculation of some characteristics of the frame:

Table 3. Critical parameters of the frame 1.

Element Critical Value υcr Ncr (kN) λcr ρ μ
Post 0.633 9.60E+02 0.960301275 0.040598284 4.96302157

Beam 1.234 9.12E+02 0.960301275 0.154273478 2.545976346

We have:

(10)

6.2. Example 2

Now let us consider the same construction as before, for the numerical values: Lp = 4.00 m, α = 12°, Lb = 8.00 m, A
= 331 cm2, Ip = Ib = 18 260 cm4, E = 21 000 kN/cm2, Np = 1 000 kN.

The following Table 4 presents the computation of the determinant │Kr│ and the nodal displacements {Dr} of the
frame, for increasing values of υ:

Table 4. Determinant and nodal displacements of the frame 2.

No. υ Load Np

(kN)
│Kr│

Nodal Displacements {Dr} of the Frame
d.o.f.

u (mm) v (mm) θ (rad)

1 0.01 2.40E-01 8.1462E+35

Node A
Node B 2.0634E-04 -1.3787E-04 -8.0221E-08
Node C 1.1457E-04 -9.3806E-04 -1.1454E-07
Node D 2.2738E-05 -1.3796E-04 -3.4315E-08
Node E

2 0.02 9.59E-01 8.1414E+35

Node A
Node B 8.2530E-04 -5.5147E-04 -3.2091E-07
Node C 4.5845E-04 -3.7533E-03 -4.5831E-07
Node D 9.1350E-05 -5.5186E-04 -1.3740E-07
Node E
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No. υ Load Np

(kN)
│Kr│

Nodal Displacements {Dr} of the Frame
d.o.f.

u (mm) v (mm) θ (rad)

. . . .

Node A . . .
Node B . . .
Node C . . .
Node D . . .
Node E . . .

. . . .

Node A . . .
Node B . . .
Node C . . .
Node D . . .
Node E . . .

90 0.844 1.71E+03 9.80033E+31

Node A
Node B -1.0202E+03 -3.5610E+00 -5.5997E-01
Node C 3.9077E+03 -2.3282E+04 -3.6307E+00
Node D 8.8389E+03 1.5962E+00 -3.1145E+00
Node E

91 0.845 1.71E+03 -1.12873E+33

Node A
Node B 9.0502E+01 -7.5971E-01 4.8152E-02
Node C -3.3959E+02 2.0213E+03 3.1546E-01
Node D -7.6996E+02 -1.2098E+00 2.7112E-01
Node E

The following Table 5 presents the calculation of some characteristics of the frame:

Table 5. Critical parameters of the frame 2.

Element Critical Value υcr Ncr (kN) λcr ρ μ
Post 0.844 1.71E+03 1.707202266 0.072174727 3.722266177

Beam 1.628 1.59E+03 1.707202266 0.268489983 1.92990511

6.3. Example 3

Now let us consider the same construction as before, for the numerical values: Lp = 4.00 m, α = 6°, Lb = 12.00 m, A
= 331 cm2, Ip = Ib = 18 260 cm4, E = 21 000 kN/cm2, Np = 1 000 kN.

The following Table 6 presents the computation of the determinant │Kr│ and the nodal displacements {Dr} of the
frame, for increasing values of υ:

Table 6. Determinant and nodal displacements of the frame 3.

No. υ Load Np

(kN)
│Kr│

Nodal Displacements {Dr} of the Frame
d.o.f.

u (mm) v (mm) θ (rad)

1 0.01 2.40E-01 4.897E+34

Node A
Node B 5.3375E-04 -1.3784E-04 -2.0286E-07
Node C 2.4113E-04 -3.0778E-03 -3.0138E-07
Node D -5.1550E-05 -1.3799E-04 -3.8238E-08
Node E

2 0.02 9.59E-01 4.88812E+34

Node A
Node B 2.1346E-03 -5.5136E-04 -8.1160E-07
Node C 9.6575E-04 -1.2327E-02 -1.2072E-06
Node D -2.0338E-04 -5.5197E-04 -1.5399E-07
Node E

(Table 4) contd.....



Linear Analysis of Stability The Open Construction and Building Technology Journal, 2018, Volume 12   291

No. υ Load Np

(kN)
│Kr│

Nodal Displacements {Dr} of the Frame
d.o.f.

u (mm) v (mm) θ (rad)

. . . .

Node A . . .
Node B . . .
Node C . . .
Node D . . .
Node E . . .

. . . .

Node A . . .
Node B . . .
Node C . . .
Node D . . .
Node E . . .

53 0.456 4.98E+02 3.0992E+31

Node A
Node B -1.6532E+02 -4.5999E-01 -5.6810E-02
Node C 5.1541E+02 -6.5220E+03 -7.1619E-01
Node D 1.1963E+03 -1.1356E-01 -4.4971E-01
Node E

54 0.457 5.01E+02 -1.30734E+32

Node A
Node B 4.0871E+01 -2.4648E-01 1.3027E-02
Node C -1.2245E+02 1.5496E+03 1.7026E-01
Node D -2.8581E+02 -3.2959E-01 1.0730E-01
Node E

The following Table 7 presents the calculation of some characteristics of the frame:

Table 7. Critical parameters of the frame 3.

Element Critical Value υcr Ncr (kN) λcr ρ μ
Post 0.456 4.98E+02 0.498344616 0.021068322 6.889457574

Beam 1.647 7.23E+02 0.498344616 0.274941597 1.9071277

6.4. Example 4

Now let us consider the same construction as before, for the numerical values: Lp = 4.00 m, α = 12°, Lb = 12.00 m, A
= 331 cm2, Ip = Ib = 18 260 cm4, E = 21 000 kN/cm2, Np = 1 000 kN.

The following Table 8 presents the computation of the determinant │Kr│ and the nodal displacements {Dr} of the
frame, for increasing values of υ:

Table 8. Determinant and nodal displacements of the frame 4.

No. υ Load Np

(kN)
│Kr│

Nodal Displacements {Dr} of the Frame
d.o.f.

u (mm) v (mm) θ (rad)

1 0.01 2.40E-01 1.18356E+35

Node A
Node B 2.7255E-04 -1.3789E-04 -1.1368E-07
Node C 1.6928E-04 -2.2363E-03 -2.1157E-07
Node D 6.5957E-05 -1.3794E-04 -5.5573E-08
Node E

2 0.02 9.59E-01 1.18246E+35

Node A
Node B 1.0897E-03 -5.5155E-04 -4.5464E-07
Node C 6.7740E-04 -8.9490E-03 -8.4674E-07
Node D 2.6492E-04 -5.5177E-04 -2.2265E-07
Node E

(Table 6) contd.....
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No. υ Load Np

(kN)
│Kr│

Nodal Displacements {Dr} of the Frame
d.o.f.

u (mm) v (mm) θ (rad)

. . . .

Node A . . .
Node B . . .
Node C . . .
Node D . . .
Node E . . .

. . . .

Node A . . .
Node B . . .
Node C . . .
Node D . . .
Node E . . .

74 0.711 1.21E+03 1.15435E+32

Node A
Node B -5.5922E+02 -9.0547E-01 1.1882E-01
Node C 2.6766E+02 -3.9220E+03 -4.8069E-01
Node D 1.0949E+03 -4.8891E-01 -3.7528E-01
Node E

75 0.712 1.21E+03 -4.56023E+31

Node A
Node B 1.4249E+03 -1.7004E-01 -3.0402E-01
Node C -6.7598E+02 9.9162E+03 1.2167E+00
Node D -2.7778E+03 -1.2283E+00 9.5163E-01
Node E

The following Table 9 presents the calculation of some characteristics of the frame:

Table 9. Critical parameters of the frame 4.

Element Critical Value υcr Ncr (kN) λcr ρ μ
Post 0.711 1.21E+03 1.211544267 0.051219986 4.418555068

Beam 2.432 1.58E+03 1.211544267 0.599273837 1.291776385

7. ANALYSIS OF THE RESULTS

Fig. (4) shows the variation of the determinant of reduced stiffness matrix of the structure according to the upsilon
argument for the four previously studied structures.

The following Tables 10, 11 summarize the obtained critical load values for the four previous examples:

Table 10. Summary of critical load values 1.

Beam Inclination (α) RL RN

Post Beam
Ncr (kN) Ratio Ncr (kN) Ratio

6°
2 0,95 9,60E+02

1,9277
9,12E+02

1,2614
3 1,45 4,98E+02 7,23E+02

12°
2 0,93 1,71E+03

1,4132
1,59E+03

1,0063
3 1,30 1,21E+03 1,58E+03

Table 11. Summary of critical load values 2.

Beam Inclination (α) RL RN

Post Beam
Ncr (kN) Ratio Ncr (kN) Ratio

6°
2

0,95 9,60E+02
0,5614

9,12E+02
0,5736

12° 0,93 1,71E+03 1,59E+03
6°

3
1,45 4,98E+02

0,4116
7,23E+02

0,4576
12° 1,30 1,21E+03 1,58E+03

(Table 8) contd.....
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Analysis of the table reveals that the cross member is more compressed than the post (RN > 1) when RL > 2; when RL

is fixed, increasing the inclination of the crossbar (α) increases the value of the critical load Ncr (lower sensitivity to
elastic instability phenomena); on the other hand, when α is fixed, the increase in the length ratio, RL, reduces the value
of the critical load Ncr (high sensitivity to the phenomena of elastic instability).

Fig. (4). Determinant-upsilon curves.

CONCLUSION

In this paper, we presented a simple and fast method for the linear analysis of stability of pitched roof frames, using
stability functions,  and updating the stiffness matrix of  the structure at  each iteration.  The reduced stiffness matrix
determinant, │Kr│, and the stability function argument, υ, were used to check the singularity condition of the reduced
stiffness matrix, [Kr], and the iterations were stopped when │Kr│ changed sign. At this stage, the critical load and some
parameters related to it have been determined.

An  important  event  observed  during  the  analysis  was  that  starting  from  the  first  iteration,  i.e.  “υ  =  0.01”,  the
determinant  │Kr│  was  positive  until  υcr  Fig.  (4);  which  reflects  the  stability  of  the  structure  for  loads  N  <  Ncr.
Furthermore,  the  determinant  decreased  and  the  displacements  converged  to  infinity  (the  structure  went  into  an
elastically unstable condition) until υcr.

The analysis focused on four frames; the obtained results show that the increase in the inclination of the crossbar (α)
makes it possible to take full advantage of the “arch effect”, and that the angle α as well as the length ratio, RL, influence
the value of the critical load, Ncr.

LIST OF ABBREVIATIONS

A = Cross-sectional area of a member (cm2)

d.o.f. = Degree of freedom

{d} = Vector of nodal deformations

{D} = Vector of nodal deformations of the structure
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E = YOUNG’s modulus of elasticity (kN/cm2)

{F} = Structural nodal load vector

{f} and {F} = Nodal load vectors

G = COULOMB’s modulus of elasticity (kN/cm2)

I = Moment of inertia of a section (cm4)

[K] = Structural stiffness matrix

L = Length of a Member (cm)

M = Bending moment

N = Axial force

P.R. = Pitched roof

[T] = Rotation transformation matrix

u = Axial displacement

v = lateral displacement

V = Shear force

Greek Symbols

θ = Rotation (positive counter-clockwise)

μ = Effective length coefficient

υ = Argument of stability functions

φ(υ) and η(υ) = Stability functions

Subscripts and Superscripts

b = Beam

cr = Critical

i = Member index, node index

p = post

r = Reduced

T = Transpose of a matrix
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