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Abstract: The paper presents discrete element simulations of the in-plane horizontal shear of planar walls having different bond
patterns. The aim of the analysis was to decide whether the shear resistance could be improved by applying patterns containing
vertical bricks. The results show that the presence of vertical bricks increases the shear resistance in case of low vertical confining
load only, and the length-to-height ratio of the wall also significantly affects the shear resistance.
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1. INTRODUCTION

Planar walls are the most widely applied components of masonry and infilled reinforcement frame buildings. They
are known for being vulnerable for in-plane horizontal shear, which significantly affects the load bearing capacity of the
whole structure. This feature is the main reason of many damages of masonry buildings exposed to earthquakes and
other  soil  motions.  The  magnitude  of  the  vertical  load  acting  on  shear  walls  significantly  affects  both  the  failure
mechanism and the load bearing capacity. Depending on the structural role of the wall, this magnitude can vary on a
large scale. In case of infilled frames where the mechanical effect of the masonry is usually ignored in the practical
design,  the  vertical  load  transferred  to  the  masonry  is  extremely  low (below 1  kN/m),  while  in  case  of  multistory
masonry buildings it may take high values (e.g. 100 kN/m). As an example, the crack pattern of a masonry infill loaded
by horizontal shear until failure can be seen in Fig. (1.1).

Fig. (1.1). Crack pattern of a sheared planar wall in reinforced concrete frame (photo: second author).
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Due  to  their  complex  material  and  structural  behaviour,  modelling  of  masonry  structures  has  always  been  a
significant challenge for structural engineers. Nowadays the most popular numerical approaches are the methods based
on Limit State Analysis (e.g. O’Dwyer, 1999; Block and – Ochsendorf, 2007; Baggio and Trovalusci, 2000 [1 - 3]), the
different finite element techniques (FEM), and the several versions of the discrete element method (DEM) (see Section
2.1). Roca et al. (2010) and Baraldi et al. (2015) [4, 5] gave a deep and detailed overview about these possibilities.
Giamundo et al. (2014) [6] compared the different modelling strategies for the special case of low strength masonry
structures. Equivalent continua like Cosserat models, can also be applied in FEM. In Trovalusci and Masiani (2003) [7]
derived a nonlinear Cosserat model was derived and applied successfully for planar walls. Casolo (2006) [8] introduced
an orthotropic Cosserat model based on the homogenization of the properties of bricks and mortar in a planar wall. With
the help of the virtual work principle, Trovalusci et al. (2014) [9] derived a micropolar, a second gradient and a classical
continuum model on the basis of rigid particle lattice systems. Identification of material parameters is also a complex
task. The conventional and popular way to obtain them is to perform direct small-scale laboratory tests on the different
constituents of the masonry, and then derive the phenomenological characteristics through a proper homogenization.
However,  it  is  not  the only way to determine them.Sarhosis et  al.  (2014) [10] applied a more precise and complex
method, transforming the task into an optimization problem. With the help of laboratory experiment a characteristic
response of the structure was measured first (e.g. ultimate load, load at first visual crack etc.), then with successive
numerical simulations the material parameters were identified by minimizing the deviation of the response between the
numerical and experimental results.

In the present study DEM is applied for performing virtual (i.e. computer-simulated) experiments instead of direct
laboratory measurements. The material parameters of the DEM models are taken from the laboratory experiments of
Fódi (2011) [11]. The aim of the virtual experiments is the following.

When  the  bricks  or  voussoirs  are  relatively  strong  and  the  mortar  is  weak  or  missing,  there  are  three  main
characteristic failure modes of sheared planar walls, depending on their length to height ratio (l/h) and the material
properties: (i) horizontal shear plane developing; (ii) diagonal cracking; (iii) rocking around the crushing corner. These
modes are illustrated in Fig. (1.2) where the gaps indicate the cracking pattern.

The final damage pattern and ultimate shear load are affected by factors such as material properties, ratio of the
main dimensions and the applied bond pattern. The most widespread brick pattern is the English bond (first picture in
Fig. (1.2)). However, vertically installed bricks may improve the shear performance. Thus the aim of the present study
is to see whether suitably chosen bond patterns can increase the load bearing capacity of planar walls. Four different
bond patterns are investigated, analyzing the effect of the vertical load magnitude and of the length/height ratio. (The
bricks are assumed to be strong so that the failure is due to contact cracking or sliding in all cases considered in the
present paper).

Fig. (1.2).  Characteristic failure modes of planar masonry walls (from left  to right:  shear plane, diagonal cracking and rocking)
(3DEC simulations).

2. TOOL OF THE SIMULATIONS: DEM AND THE APPLIED SOFTWARE

2.1. The Discrete Element Method

The  discrete  element  method  (DEM) is  a  powerful  tool  for  the  modelling  of  masonry  structures  where  contact
separation and frictional sliding between the bricks or stones are common. DEM was first introduced for the simulation
of fractured rocks by P.A. Cundall (1971) [12], and has been applied in the engineering practice approximately since the
1990s, when computer hardware became powerful enough to simulate realistic problems on average PCs. A discrete
element model considers the structure to be a collection of separate blocks, “discrete elements”, each of which is able to
move and - in most software - to deform independently of each other. The blocks may come into contact with each



222   The Open Construction and Building Technology Journal, 2016, Volume 10 Szakály et al.

other hence distributed forces can be transmitted from one block to another, causing stresses and deformations in the
blocks.  According  to  the  criteria  formulated  by  Cundall  and  Hart  (1992)  [13],  a  numerical  technique  is  a  discrete
element model if

(1) the elements are able for finite (i.e. large) translations and rotations; and

(2) complete detachment as well as formulation of new contacts are allowed and automatically followed.

The  second  criterion  means  two  important  differences  from  the  finite  element  method  (FEM):  there  are  no
continuity conditions at  the common points  of  the contacting elements,  and the elements  are continuously checked
throughout the calculations whether they get into contact with each other.

The large displacements are usually followed with the help of some kind of a time-stepping scheme: most DEM
codes determine the characteristic motions of the analysed system (leading from an initial geometry to the equilibrium
position corresponding to the loads) along a series of small but finite time intervals, applying Newton’s laws of motion.
Using DEM, a simulated structure may split into pieces (e.g. a stair may fall into individual treads) which may even
bounce into each other on the ground forming a heap balanced under its own weight. There are innumerable different
versions of discrete element techniques - the elements may be rigid or deformable, spherical, polyhedral or irregular, the
time integration may be explicit or implicit, or may be replaced by a quasi-static method, etc. A very useful introduction
is given by O’Sullivan (2011) [14] on the most important techniques1. An excellent overview is given by Lemos (2007)
[15]  on the different  mathematical  and practical  approaches to  simulate  masonry structures  with the help of  DEM,
including practical engineering applications as well.

Despite  the  few  doubts  regarding  its  usage  (Huerta,  2008)  [16],  the  capability  to  simulate  partial  or  complete
separation  of  blocks  from  each  other  and  contact  sliding  between  the  voussoirs  makes  DEM  a  suitable  choice.
Therefore, a carefully calibrated DEM model is a powerful tool for the analysis of masonry structures. Such a DEM
model was applied by Sarhosis et al. (2014) [17] for the analysis of masonry infilled frames with openings. Because of
its ability to follow frictional sliding, failure processes and collapse histories in detail, DEM was chosen in the present
study to serve as the basic tool of the investigations introduced in the present paper.

2.2. The Applied Software

The commercial  DEM code named 3DEC was applied in the calculations.  UDEC (“Universal  Distinct  Element
Code”), the 2D ancestor of 3DEC, was originally developed for the modelling of fractured rocks P.A. Cundall (1971)
[12], but today its 2D and 3D versions are widely used in the engineering practice also for masonry structures.

The discrete elements in 3DEC may have any polyhedral shape, and they can be made deformable in such a way
that they are divided into simplexes (tetrahedra in 3D) which serve as uniform-strain finite elements. The nodes of the
simplexes  (“gridpoints”)  of  the  deformable  elements  are  the  basic  units  of  the  analysis.  The mass  of  a  gridpoint  is
defined with the help of the volume of the Voronoi cell around that gridpoint within the element, and different forces2

may act on this volume assigned to the gridpoint. The basic step of the calculations is to determine the displacements of
these  nodes  during  a  small  finite  Δt  time  interval,  and  this  is  done  by  Newton’s  second  law  of  motion  (force-
acceleration  law).  An  explicit  time  integration  scheme,  based  on  central  differences,  is  used  for  simulating  the
mechanical  behaviour  (motions,  from  them  strain  increments,  changes  of  stresses  and  forces,  etc.)  over  time:  the
simulation  of  the  state  changing  under  a  given  loading  process  is  achieved  by  step-by-step  calculation  of  the
incremental  motions  of  the  reference  points  or  gridpoints.

The  joints  between  the  elements  may  have,  in  principle,  two  different  roles  depending  on  the  intention  of  the
modeller. The first option (the one that was used in this present study) is that the joints represent some kind of mortar
layer (or e.g. clay layer in fractured rocks) having a finite thickness in reality. In this case, the material parameters of the
joints express the deformability of these layers and their failure criteria. Therefore a normal and a tangential stiffness
(i.e., resistance to relative translation) have to be prescribed along with either some fracture criteria (normal and shear
strength) and perhaps a friction coefficient in order to define the conditions when the joints fail.

1 A special value of that book is that the issue of numerical stability, which is particularly important in the stability analysis of masonry vaults and
domes, is discussed in detail.

2 e.g. weight, distributed forces expressed by neighbouring Voronoi cells because of the stresses inside the simplexes, contact forces transmitted from
contacting elements.
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The other option is most suitable if there is no material layer between the blocks in the real system. In this case the
aim  is  to  simulate  dry  contacts,  or  perhaps  to  neglect  the  weak  mortar  in  an  old  masonry  structure.  The  friction
coefficient of the joints still has a real physical meaning, expressing the sliding criterion of the two contacting bricks or
stone blocks along each other. The contact stiffnesses, on the other hand, are artificial numerical penalty parameters
only. This option was not applied in the present paper.

2.3. Geometry and Material Properties of the Simulated Walls

During the simulations four different bond brick patterns were investigated, each made of conventional Hungarian
solid masonry units (120x250x65 mm3, see Porotherm, 2014 [18]). However, in the models simplified type of micro
modelling was applied, which means that only the masonry units had a finite volume, while the originally ~1 cm mortar
layers were included in the size of the bricks and they were represented by zero-thickness contact surfaces between the
blocks.

Fig. (2.1) shows the four different bond patterns analysed in the simulations. The classical English bond and the
herringbone pattern are well-known in the engineering practice; an X-pattern and a V-pattern (both containing vertical
bricks arranged in a special way) were invented to try whether they have advantages to the traditional patterns.

Fig. (2.1). The investigated bond patterns from left to right: English bond, diagonal herringbone pattern, X-pattern, and V-pattern.

The total dimensions of the walls having different patterns were very close to each other (about 231(233) - 462(467)
cm × 161 cm × 25 cm, the small differences came from the different numbers of truncated bricks applied to the different
bond patterns). Walls having different length-to-height ratios (Table 2.1) were prepared for each bond pattern, in order
to analyse the effect of the wall shape.

Table 2.1. The applied l/h ratios.

  #1 #2 #3 #4
Length/height (l/h) ratios [-] 1.42 1.89 2.36 2.84

In all cases the masonry units had linearly elastic, isotropic mechanical behaviour while the joints (mortar layers)
followed the cohesionless Coulomb friction law. Table 2.2 shows the parameters of the different models: the density ρ,
bulk and shear modulus K  and G  corresponding to the bricks, the normal stiffness kn,  shear stiffness ks  and internal
friction angle φ corresponding to the joints. The applied material parameters are based on the experimental results in
Fódi (2011) [11].

Table 2.2. The applied material parameters.

  ρ [kg/m3] K [N/m2] G [N/m2]
Brick model 1428 1.1e10 8.33e9
  kn [N/m2/m] ks [N/m2/m] φ [°]

Joint model 1e10 7e9 38

2.4. Loads and Boundary Conditions

The wall models were supported with a foundation block below (see Fig. (2.2)): the nodes of this lowest block were
fixed  against  any  translations.  The  applied  loads  consisted  of  three  components  (see  Fig.  (2.2)  again):  (i)  first  the
selfweight of the blocks was applied; (ii) then a vertical stabilizing load was put on the top of the wall; (iii) finally, as
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the main loading component of the analysis, a monotonically increasing horizontal lateral load was applied with the
help of a simulated hydraulic jack.

The magnitude of the stabilizing vertical load was one of the parameters whose effect on the shear resistance (i.e. on
the magnitude of the ultimate shear load and on the failure mechanism) was investigated. Six different values were used
and the corresponding shear resistances were determined for each (see the applied magnitudes in Table (2.3)).

Table 2.3. The different vertical load magnitudes.

  #1 #2 #3 #4 #5 #6
Vertical load magnitudes [kN/m] 0.87 4.35 8.7 21.74 43.48 86.96

The total loading process consisted of the following steps. First of all, the foundation element at the bottom of the
wall was supported against all translational velocities while all of the bricks were free to move and deform, and the
gravitational load of the bricks was applied. After finding the equilibrium under selfweight, the vertical load was put on
the  top  surface  of  the  wall  as  a  uniformly  distributed  load  (Fig.  2.2).  In  order  to  ensure  quasi-static  loading
circumstances,  every  vertical  load  was  applied  in  about  thirty  steps  with  a  careful  balancing  process  after  each.

Fig. (2.2). The applied vertical load and the horizontal shear force expressed by a lateral brick.

The horizontal shear loading was expressed with the help of a horizontally moving velocity-controlled lateral block,
simulating the hydraulic jack usually applied in laboratory experiments. In order to avoid the sudden impact of the
block into the edge of the wall and to preserve the quasi static characteristic of the process, the procedure consisted of
consecutive loading and equilibrating phases. In a loading phase the magnitude of the prescribed velocities of the side
block was defined according to a special function (see Fig. (2.3)), and altogether 1 mm translation was accumulated.
Then an equilibrating phase followed: the velocities were set  to zero,  and the model was equilibrated (cycling was
continued until the average unbalanced nodal force resultant divided by the average load acting on the nodes becomes
smaller than 10-5) In the loading phase the velocity of the loading block first gradually increases from 0.005 to 0.015
m/s (first third of the total loading phase), then the velocity is kept constant in the middle stage (second third of the
loading phase), and finally it decreases back to 0.005 m/s in the same way (last third of the loading phase). The discrete
values of this function were calculated in such a way that a total  1 mm translation was produced until  the velocity
decreased to zero (see Fig. (2.3)). Note that the area under the red line is 1 mm altogether.
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Fig. (2.3). The prescribed function for the definition of the translational load.

The aim of the simulations is to determine the ultimate load for different bond patterns and vertical load magnitudes.
Since the definition of 'load bearing capacity' is not unambiguous for masonry structures, its concept has to be uniquely
defined before a numerical analysis. In this study, the load bearing capacity is defined as the first local maximum on the
force-displacement  diagrams,  which  is  often  (but  not  always)  also  the  highest  occurring  value.  For  the  better
understanding  of  the  definition,  the  following  table.

Fig. (2.4) shows three different load-displacement scenarios, and the ultimate shear load is marked with a red circle
in every case.

Fig. (2.4). Definition of ultimate load for different load-displacement scenarios.

2.5. Convergence Analysis

In the 3DEC model each deformable block (or brick) is subdivided into uniform-strain finite elements. Following
the FEM protocols, a convergence analysis is required to eliminate the error originated from a perhaps too rare mesh.
For this  purpose,  the same problems were repeated in 3DEC with different  mesh sizes,  namely the English and X-
pattern walls with slightly smaller dimensions (in order to reduce the necessary computational time) under 86.96 kN/m
vertical load. Since the ultimate shear load will be used as the main characteristic determined in the simulations, the
load bearing capacity of these walls is chosen to be the basis of the convergence analysis too. The density of the mesh is
characterized with the help of three numbers which how many finite elements are applied along the specific edges (for
example 1×2×3 means that the block is divided into one part along the shortest, two parts along the middle and three
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parts along the longest edge). The results of the analysis can be seen in Fig. (2.5).

Fig. (2.5). The result of the convergence analysis.

According  to  the  Fig.,  six  different  mesh  sizes  are  investigated,  namely  from 1  to  6  on  the  diagram (using  the
previously introduced notation): 1×2×2, 2×2×2, 2×2×3, 2×3×3, 2×3×4, and 3×3×4. The results show that the fifth one
(2×3×4) is already enough to be used during the simulations because the difference between the fifth and sixth cases is
negligible. The applied subdivision is shown in Fig. (2.6).

Fig. (2.6). The applied finite element mesh of a brick element.

The small loading block on the left of the wall simulating the hydraulic jack is also subdivided into 2×3×4 elements.
However, since all its FEM nodes are translated with exactly the same prescribed displacement, the loading block does
not deform, and the details of its subdivision are indifferent.

The mesh generator of the 3DEC software is based on a random algorithm, consequently if the same problem is
intended to be repeated (with same mesh density), different results may be received due to the slightly different random
finite element meshes inside the discrete elements. In case of rare meshes it can lead to a serious difference between the
results, thus in contrast with the FEM programs, the scatter of the results depending on the mesh density has also to be
checked. The shearing process of the English wall with 21.74 kN/m vertical load was performed twice with tetrahedral
subdivision, and the corresponding force-displacement diagrams were compared. The diagrams belonging to the two
different meshes practically perfectly coincided, so the subdivision of each brick into 2×3×4 finite elements was proven
to be dense enough.

3. RESULTS OF THE SIMULATIONS

3.1. Shear Behaviour Depending on the Vertical Load

This section introduces the dependence of the shear behaviour on the magnitude of the constant vertical load acting
on the top of the walls. All models considered in this section were around 2.31 - 2.33 m long according to the number of
truncated bricks in the different patterns. The l/h ratio was approximately equal to 1.42. The herringbone pattern is not
symmetric. Therefore, in addition to shearing from left, the process was also performed from the opposite direction,
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having the hydraulic jack on the right side (this will be denoted as “Herringbone_R” in the diagrams below).

Fig. (3.1). The horizontal force-displacement diagrams for the case of the largest vertical load.

In case of the highest vertical load (86.96 kN/m), perhaps in contrast with the expectations, the classical English
wall had the largest resistance to shear (Fig. 3.1). The next one was the Herringbone_R wall, then the X-pattern and V-
pattern walls followed. Note that the resistance of the herringbone wall is highly dependent on the direction of the shear
load (more than 30 % in the shear forces).

Considering  the  crack  patterns  (captured  at  40  mm  horizontal  displacement)  for  the  English,  X-pattern  and
Herringbone walls (Fig. 3.2, from left to right), the failure mechanism was always diagonal cracking (as well as in the
other two cases, V- and reversed herringbone pattern, not shown here). Since there is no horizontal shear plane in case
of the highest vertical load, the vertically installed bricks do not improve the shear performance of the walls (actually
their presence seems to slightly reduce it due to the rotation of the vertical bricks along the diagonal cracking), thus the
English wall supports the highest horizontal load.

Fig. (3.2). Crack patterns for the case of the largest vertical load (86.96 kN/m). Color scale indicates displacement magnitude (from
left to right: English, X-pattern and Herringbone).

Now  consider  the  case  of  the  lowest  vertical  load.  From  the  detected  force-displacement  diagrams  (Fig.  3.3),
contrary to the previous case considering a large vertical load, the Herringbone_R and X-pattern walls have the largest
load bearing capacity, and the English wall practically shows the worst performance.
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Fig. (3.3). The horizontal force-displacement diagrams for the case of the lowest vertical load.

To get a better understanding of this, the crack patterns captured at 20 mm horizontal displacement of the same
walls are shown again Fig. (3.4). In case of the English wall a horizontal shear plane develops, but at the other walls the
diagonal cracking (which is a combination of horizontal sliding and separation of vertical joints) remains the failure
mode, thus now the vertical bricks indeed improve the shear performance of the walls.

Fig. (3.4). Crack patterns for the case of the lowest vertical load (0.87 kN/m). Color scale indicates displacement magnitude (from
left to right: English, X-pattern and Herringbone).

Compare now the load bearing capacity of the different walls under the six different vertical load magnitudes. Fig.
(3.5) shows this load bearing, normalized with the magnitude of the vertical load, as the function of the vertical load
itself (along the horizontal axis the magnitude of the vertical load is in logarithmic scale). It can be concluded that the
vertically installed bricks only help when the vertical load is low (up to about 4.35 kN/m). Above this limit the classical
English wall shows the best shear performance.
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Fig. (3.5). The load bearing capacities of the walls depending on the vertical load magnitude.

3.2. Shear Behaviour in Terms of the Length-to-Height Ratio

The second mean factor modifying the shear resistance is the l/h  ratio of the walls.  For every pattern described
previously,  we studied four different lengths.  All  of them considered two vertical  load magnitudes:  4.35 and 21.74
kN/m. Consider first the case of the lowest vertical load magnitude (Fig. 3.6).

Fig. (3.6). Effect of the l/h ratio for 4.35 kN/m vertical load.

In all cases, the shear load bearing capacity turned out to be an approximately linear function of the length to height
ratio. Since the vertical load resultant increases proportionally with the length of the wall,  according to the applied
Coulomb frictional law, the resistance should be a monotonically increasing function of the length assuming that failure
mode does not change with increasing length. Indeed, it was found for all patterns that the failure mechanism did not
depend on the length to height  ratio:  the mode occurring for  the shortest  wall  of  a  certain pattern was valid for  all
lengths belonging to that same pattern.
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English wall  has  the smallest  shear  resistance (Fig.  3.7)  (captured slightly  after  the ultimate  load)  shows that  a
sliding failure mode occurs for English walls, while a diagonal cracking happens in the case of the other patterns (as a
characteristic example, the herringbone pattern is shown). The low load bearing of the English wall in comparison to
the other patterns is explained by the position of the sliding surface: for all l/h ratios, the plane is near the top of the
wall, at the same height for every length. The compression along this surface is produced by the vertical load on top
plus the weight of the bricks above the sliding plane. At patterns where some of the sliding horizontal contacts carry
larger compression than others (see the herringbone pattern in (Fig. 3.7) for example), the contribution of the lower
contacts to the shear resistance is more significant leading to higher load bearing capacity.

Fig. (3.7).  Failure modes for different l/h  ratios for 4.35 kN/m vertical load. Color scale indicates displacement magnitude (up:
English bond, down: Herringbone).

At medium vertical load magnitudes Fig. (3.8) the resistance of the walls increases with the length. For long walls
the X-pattern and herringbone_R walls have the highest load bearing capacity, while in the shortest case the English
shows the best resistance.

Fig. (3.8). Effect of the l/h ratio for 21.74 kN/m vertical load.

The damage modes in Fig. (3.9) offer the following explanation: In case of the English pattern, at the shortest wall a
combined diagonal cracking and horizontal sliding failure occurs which implies higher shear resistance. However, with
increasing length to height ratio the horizontal sliding failure becomes dominant over the combined mode, resulting in
the decreasing of the shear performance. At the Herringbone pattern instead of sliding, the rotation of the vertical bricks
can be noticed along the diagonal failure surface, thus lower horizontal force is enough to displace the wall (similar
mechanism was found at all other patters containing vertical bricks). Indeed, by the comparison of the shortest walls in
Fig. (3.9), at both patterns similar diagonal failure surface appears, but the English pattern has the larger resistance. In
case of long walls with vertical bricks a significantly larger part of the wall is moving in comparison with the English
pattern because of the different failure modes, leading to higher resistance.
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Fig. (3.9). Failure modes for different l/h ratios beside 21.74 kN/m vertical load. Color scale indicates displacement magnitude (up:
English bond, down: Herringbone).

CONCLUSION

In  this  study  masonry  walls  with  different  bond  patterns  were  investigated  under  monotonically  increasing
horizontal shear, with a particular attention to the effect of a constant vertical load magnitude and of the length/height
ratio of the wall. It turned out that the stabilizing effect of the vertical load plays a very important role in the shear
performance:

 → In case of low magnitudes it was found that walls without vertically installed bricks are susceptible to fail with
horizontal shear plane which leads to a lower shear resistance.

 → In case of high vertical load magnitudes the characteristic failure mode was diagonal cracking or combined
diagonal and sliding failure at all bond patterns, and the classical English wall showed the best performance against
horizontal shearing.

In contrast with the vertical load magnitude, the l/h ratio did not significantly affect the failure mode of the walls,
thus if the failure mode was a horizontal shear plane, the ultimate load was practically a linear function of the length of
the wall. At patterns containing vertical bricks, instead of sliding the rotation of the vertical bricks can be noticed along
the diagonal failure surface, which also affects the magnitude of the ultimate load.

Walls with herringbone (i.e. non-symmetric) pattern turned out to be rather sensitive to the direction of the shear
load: more than 30 % difference was detected according to the direction of the loading. Consequently, this pattern can
be beneficial only in those cases where the direction of the shear load is known and remains unchanged. However, it is
not valid for usual shear loads in the engineering practice (earthquake, soil motions).

To summarize, the results show that the application of vertical bricks in the bond pattern does not necessarily lead to
an increased shear resistance: the magnitude of the vertical load and the length to height ratio determine which bond
pattern leads to the highest shear resistance.
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