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Abstract: This study considers an analytical method to detect the damage location from the moment diagram calculated 

by the external forces and the forces required for obtaining the same deflections as the measurement deflections. The 

measured deflections must be a part of displacements to restrict the static behavior of the damaged beam. The constraint 

forces acting at measurement points are derived by minimizing the cost function of the displacement change between the 

undamaged and damaged beams. It is shown that the damage exists near the location that the moment ratio to be ex-

pressed by the moment values of the undamaged and damaged beams increases abruptly. However, closely neighboring 

damages can be found by increasing the number of finite elements and measurement points. The validity of the proposed 

method is illustrated in an application. 

INTRODUCTION  

 There has been a lot of research endeavor for damage 
detection and assessment of structures by the dynamic ap-
proach using dynamic test data or the static approach using 
static test data. Although the dynamic approaches have been 
developed more actively, the static approaches have advan-
tages to be simpler and comparatively cheaper than the dy-
namic ones. Thus, the static test data are expected to yield 
more reliable results than the dynamic approaches. 

 The static approaches only require the stiffness proper-
ties. And the number of transducers for measuring the de-
flection is far less than the number of degrees of freedom in 
the finite element model. The measured deflection data may 
be expanded to estimate the data at full set of degrees of 
freedom. 

 The spatially sampled field measured during the dynamic 
and static testing has been an active area of research for 
many years. Comparing just the measured partition of the 
full analytic displacement shapes to the test displacement 
shapes, most analysis procedures are possible only when 
there is one-to-one correspondence between the model de-
grees of freedom and the test measurements. 

 Sheena et al. (1982) [1] presented an analytical method 
to assess the stiffness matrix by minimizing the difference 
between the actual and the analytical stiffness matrix sub-
jected to the measured displacement constraints. Minimizing 
the difference between the applied and the internal forces, 
Sanayei and Scampoli (1991) [2] presented a finite element 
method for static parameter identification of structures by the 
systematic identification of plate-bending stiffness parame-
ters for a one-third scale, reinforced-concrete pier-deck 
model. Sanayei and Onipede (1991) [3] provided an analyti-
cal method to identify the properties of structural elements 
from static test data such as a set of applied static forces and 
another set of measured displacements. Minimizing an index 
of discrepancy between the model and the measurements,  
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Banan et al. (1993) [4,5] proposed the mathematical formu-
lations of two least-squares parameter estimators that esti-
mate element constitutive parameters of a finite-element 
model that corresponds to a real structural system from 
measured static response to a given set of loads. And they 
investigated the performance of the force-error estimator and 
the displacement-error estimator.  

 Cui et al. (2000) [6] developed a damage detection algo-
rithm based on static displacement and strain. This method 
has a difficulty in requiring sufficient measurement informa-
tion and load cases. Choi et al. (2004) [7] developed an elas-
tic damage load theorem and an approach on the damage 
identification using static displacements. Chen et al. (2005) 
[8] presented a two-stage damage identification algorithm to 
use the change of measured static displacement curvature 
and grey system theory. Bakhtiari-Nejad et al. (2005) [9] 
presented a method to describe the change in the static dis-
placement of certain degrees of freedom by minimizing the 
difference between the load vectors of damaged and undam-
aged structures. Wang et al. (2001) [10] proposed a two-
stage identification algorithm for identifying the structural 
damages by employing the changes in natural frequencies 
and measured static displacements. 

 Based on the measured deflection data, it is recognized 
that the structural damage causes the additional deflection at 
the initial beam structure due to the deterioration of the load-
carrying capacity at the damage portion. Assuming the 
measured deflection data as the displacement constraints, a 
set of forces required for satisfying the given constraints can 
be regarded as the constraint forces. It can be recognized that 
the deflected curve can be estimated by the action of both 
external forces and constraint forces. Pandey et al. (1991) 
[11] stated that once the displacement shapes of a damaged 
and of the corresponding undamaged structures are identi-
fied, the curvature can be obtained by a central difference 
approximation. The curvature is related to the moment 
within the elastic range. The damage exists at the position to 
exhibit the abrupt increase of the curvature or moment due to 
the deterioration of flexural rigidity. 

 The purpose of this study is to propose an analytical 
method to predict the damage location based on the moment 
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diagram calculated by both the constraint forces at measure-
ment points and the known external forces. The constraint 
forces are derived by the equilibrium equation for con-
strained systems provided by Eun, Lee and Chung (2004) 
[12]. The validity of the proposed method is illustrated in 
beam applications.  

FORMULATION  

 The intact and damaged beams subjected to external 
forces exhibit different deflection curves. Fig. (1a and 1b) 
represent deflected shapes of simply supported beams with 
and without damages, respectively. Measuring the deflec-
tions at m different points as shown in Fig. (1a and 1b), the 
measured deflection of damaged beam slightly increases due 
to the locally deteriorated flexural rigidity. The same deflec-
tion at the measurement points can be obtained by the action 
of unknown concentrated forces required for the measured 
deflections at the intact beam as shown in Fig. (1c). Thus, if 
the forces at the measurement points are properly calculated, 
the deflection of the damaged beam can be approximately 
estimated and the damaged location can be found based on 
the moment diagram drawn by the external as well as con-
straint forces. In the following, the equilibrium equation and 
the forces to describe the deflected curve of damaged beam 
based on measured displacement data are introduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Static deflection of undamaged and damaged beams; (a) a 

simply supported beam subjected to a concentrated force, (b) de-

flection of damaged beam; (c) constraint forces at the measurement 

locations. 

 Let us consider an analytical model for the analysis of 

static response 
  
u = u

1
u

2
u

n[ ]
T

 formulated as 

 F = Ku              (1) 

where  K  is an n n  positive-definite stiffness matrix and 

 F  denotes an n 1  applied static force vector. The dis-

placement vector of the undamaged structure,  u , can be cal-

culated as 

 u = K
-1
F             (2) 

 If the system has been damaged by environmental or ac-
cidental loads, the structural parameters are changed and the 
initial displacements do not correspond with the measured 
displacements of the damaged beam. The equilibrium equa-
tion of the damaged structure under the same applied forces 
can be written as  

 
K + K( )u*

= F             (3) 

where  K  represents the variation in the stiffness matrix 

and  u
*

 is the displacement vector of the damaged structure. 

Taking the first-order approximation of the displacement 

vector  u
*

, it can be written by 

 
u

*
= K + K( )

-1

F K
-1

- K
-1

KK
-1( )F        (4a) 

or  

 Ku
*

= F - KK
-1
F          (4b) 

 The second term in the right-hand side of Eqn. (4b) indi-
cates the force vector to explain the additional deflection due 
to the damage. The forces can be regarded as the forces re-
quired for the measured displacement change between un-
damaged and damaged beam structures or they are inter-
preted as the forces required for satisfying the measured dis-
placements. The measured displacements partially restrict 
the static behavior of damaged structure. Thus, the displace-
ment constraints to restrict the static behavior are the meas-
ured displacements and can be written as 

 i
u( ) = c

i
 

  
i = 1, 2, , m          (5) 

where ci
's  are the measured displacements and they can be 

expressed in matrix form of  

 Au
*

= c             (6) 

 The cost function for predicting the deflection of full set 
of degrees of freedom from the measured deflection data can 
be established as 

  

J =
1

2
u - u

*( )
T

K u - u
*( )            (7) 

 Minimizing a quadratic function of the displacement dif-
ference between undamaged and damaged structures of Eqn. 
(7) with respect to the damaged displacement vector, the 
displacements of damaged structure provided by Eun, Lee 
and Chung (2004) [12] are derived as 

 
u

*
= u + u = u + K

-1/ 2
AK

-1/ 2( )
+

c - Au( )          (8) 
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where u denotes the displacement variation due to the dam-
age and ‘+’ denotes the Moore-Penrose inverse

1
. The deriva-

tion is introduced in Appendix. Premultiplying both sides of 
Eqn. (8) by the stiffness matrix K, it yields 

 
Ku

*
= Ku + K

1/ 2
AK

-1/ 2( )
+

c - Au( )          (9) 

where the second term in the right-hand side denotes the 
additional forces to act on the original structure besides the 
initially applied force vector F. From Eqns. (4a) and (8), the 
displacement variation is defined as 

 
u = -K

-1
KK

-1
F = K

-1/ 2
AK

-1/ 2( )
+

c - Au( )       (10) 

 It is apparent that the damage is caused by the action of 
the additional forces. The additional forces defined as the 
constraint forces are calculated as 

 
F

c
= K

1/ 2
AK

-1/ 2( )
+

c - Au( )         (11) 

 If the structure is not damaged, the additional forces do 

not require and the displacement variation  u = u
*

- u  must 

be zero. And it can be observed that the constraint forces 

increase with the increase in the displacement difference 

 c - Au  at the measurement points. 

 The validity of the derived constraint forces can be 
evaluated by substituting the constraint force vector of Eqn. 
(11) into the constraints of Eqn. (6). The constraints of Eqn. 
(6) can be modified as 

 
AK

-1
K u + u( ) = AK

-1
F + F

c( ) = c        (12) 

Utilizing Eqn. (11) into Eqn. (12), it follows that 

 

AK
-1
F + AK

-1
K

1/ 2
AK

-1/ 2( )
+

c - AK
-1/ 2

K
1/ 2

u( ) = c

Au + AK
-1/ 2

AK
-1/ 2( )

+

c - AK
-1/ 2

K
1/ 2

u( ) = c

AK
-1/ 2

AK
-1/ 2( )

+

c = c

      (13) 

where 

 
AK

-1/ 2
AK

-1/ 2( )
+

AK
-1/ 2

= AK
-1/ 2

. 

 Premultiplying both sides of the last equation of Eqn. 

(13) by 
 
AK

-1/ 2( )
+

, it is observed that the constraint equation 

of Eqn. (6) is satisfied. The deflected curve of the damaged 

beam can be predicted by the displacement equation of Eqn. 

(8) or based on the constraint forces of Eqn. (11). 

DAMAGE DETECTION BY MOMENT DIAGRAM 

 Beam is a flexural member which flexural mode or flex-
ural curvature governs its mechanical behavior. When the 
beam is elastic, the moment is proportional to the curvature: 

                                                

1 Letting 
  
A

T
= a

1

T
a

2

T
L a

m

T
, where 

  
a

i
 is the i–th 1 n  row 

vector and assuming that all row vectors are independent, the pseudo inverse of the 
matrix can be calculated as 

  

A
+

=
a

1

T
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1
a

1

T
+

a
2

T

a
2
a

2

T
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a
m

T
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a
i
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a
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a

i

T

i=1

m

. 

 

Mo(x) = EI( )o o(x)          (14) 

where Mo , EI( )o  and o  are the moment, flexural rigidity 

and curvature of the initial beam, respectively. The occur-

rence of the damage yields the deteriorated flexural rigidity 

EI( )d , and the moment Md  and the curvature d  abruptly 

increase. The damage detection method based on the dis-

placement curvature provided by Pandey et al. can be certi-

fied by the moment distribution from the relation of Eqn. 

(14).  

 The moment diagram can be drawn by the constraint 
forces calculated by Eqn. (11) at the measurement points and 
the known external forces. The damage is located near the 
point to exhibit the abrupt increase of moment. As an appli-
cation to verify the proposed damage detection method, we 
consider a simple cantilever beam in Fig. (2). It is assumed 
that the beam is modeled using the finite element method 
with 50 beam elements that the length of each element is 
20mm. The beam has a length of 1m, a gross cross-section of 

mm9mm75  and the damage section of mm9mm25 . 
The damage degree was established as the 33% strength of 
the initial second moment of inertia. The beams were dam-
aged at locations of 200, 400 and 600mm, respectively, from 
the fixed end and they have a single damage or multiple 
damages. The deflection of the beam was measured at 180, 
360, 540 and 720mm from the fixed end. The beam was sub-
jected to a concentrated force 97N  at the free end. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (2). A cantilevered beam subjected to a concentrated force 

(unit: mm); and represent the damage location and measurement 

location. 

 Table 1 represents the deflection data measured at four 

points and the forces for satisfying the measured deflection 

data calculated by Eqn. (11). The forces for the measured 

deflection are exhibited in Fig. (3) and they show different 

force direction and values according to the damage location. 

In the plots, the (+) values indicate the lower force direction 

( ) and the (-) the upper force direction ( ). As the damage 

occurs near the fixed end, it is observed that larger forces are 

required. Fig. (4) exhibits the moment diagram drawn by the 

forces shown in Fig. (3). In the plots, Mo  denotes the mo-

ment of the original beam and Md  represents the moment of 

the damaged beam subjected to the calculated forces. If the 
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Fig. (3). Constraint forces at measurement points; (a) D-2, (b) D-4, (c) D-6, (d) D-2,4, (e) D-2,6, (f) D-4,6, (g) D-2,4,6. 

 

Table 1. Measured Deflection Data and Required Constraint Forces 

Deflection (mm)/forces (N) 
Beam Damage Locations (mm) 

x= 720mm x= 540mm x= 360mm x= 180mm 

N Without damage 21.98/0 13.55/0 6.72/0 2.00/0 

D-2 200 23.38 /9.0 14.29/-54.1 6.83/248.5 1.66/-454.5 

D-4 400 22.39/-6.8 13.45/113.9 6.23/-235.9 1.66/171.8 

D-6 600 21.74/57.1 13.05/-129.5 6.23/92.2 1.66/-26.3 

D-2,4 200, 400 24.26/2.2 14.69/59.8 6.83/12.6 1.66/-282.7 

D-2,6 200, 600 23.61/66.1 14.29/-183.6 6.83/340.7 1.66/-480.9 

D-4,6 400, 600 22.62/50.2 13.45/-15.6 6.23/-143.7 1.66/145.4 

D-2,4,6 200, 400, 600 24.49/59.3 14.69/-69.7 6.83/104.8 1.66/-309.1 
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Fig. (4). Moment ratio; (a) D-2, (b) D-4, (c) D-6, (d) D-2,4, (e) D-2,6, (f) D-4,6, (g) D-2,4,6. 

damage locations do not coincide with the measurement lo-

cations, the approximate damage location should be detected. 

If the damage is located at the measurement locations, the 

damage location can be exactly detected. And if the number 

of finite elements increases, it will be possible to detect the 

damage location more closely. As shown by the plots to rep-

resent the moment ratio of the beams with a single damage 

and multiple damages, it is recognized that the damage exists 

the location to exhibit the moment ratio larger than 1.2. In 

the beams with closely neighboring multiple damages, it is 

not easy to distinct the explicit damage location. Fig. (5) 

represents the constraint forces and moment diagram of the 

beam D-2,4 modeled as 100 finite elements and eight meas-

urement points. As shown by Fig. (5), it can be expected that 

the problem can be alleviated by increasing the number of 

finite element as well as the number of measurement points 

or assuming that the damages exist above the moment ratio 

of 1.2. The application exhibits that the proposed method can 

be widely utilized for the damage detection of flexural beam.  

CONCLUSIONS 

 The damage of flexural beam can be detected by the dis-

placement curvature as mentioned by Pandey et al. Consid-
ering that the moment is proportional to the curvature within 

the elastic range and using moment distribution or variation, 

this study proposed an analytical method for the damage 
detection of beams. Predicting the forces required for satisfy-

ing the measured deflection data at the measurement points, 

the moment diagram was drawn by the calculated forces. 
Although the abrupt increase of the moment near the damage 

location can be observed, the damage locations of the beams 

that the damaged locations do not coincide with the meas-
urement locations can be approximately detected. The dam-

ages of the beams which have closely neighboring damages 

can be identified by increasing the number of finite element 
and the number of measurement points. It is concluded that 

the proposed method based on moment diagram can be 

widely utilized in predicting the damage detection.  

 



6    The Open Construction and Building Technology Journal, 2007, Volume 1 Eun and Lee 

APPENDIX 

 The equilibrium equation for unconstrained structure 

described by a displacement vector 
   
û = û

1
û

2
û

n[ ]
T

 

can be written as 

 F = Kû            (A1) 

where F is the 1n  nodal force vectors, and K is the n n  

positive definite stiffness matrix. Assume that the structure is 

subjected to m  displacement constraints  

  i
u( ) = c

i
, 

 
i = 1, 2, m .      (A2) 

or 

 Au = b ,          (A3) 

where A is an m n  matrix and u is an n 1  actual dis-

placement vector. The two displacement vectors exhibit dif-

ferent displacements due to the constraints.  

 Defining the displacements at actual state as 

 u = û + u , the change of the potential energies can be 

written as 

  

=
1

2
û + u( )

T

K û + u( ) - û + u( )
T

F   

    

  

-
1

2
û

T
Kû + û

T
F       (A4) 

 The equilibrium equation of the constrained system and 

the constraint equation can be modified as 

 F = Kû + K u           (A5) 

 
A û + u( ) = b          (A6) 

 Expressing the constraint force vector  F
c
, Eqn. (A5) is 

written as 

 F = Kû + F
c

         (A7) 

 For this derivation, Eqn. (A6) is modified as 

 A u = b - Aû           (A8) 

 In order to utilize Eqn. (A8) into Eqn. (A4), Eqn. (A8) is 

modified as 

 AK
-1/ 2

K
1/ 2

u = b - Aû         (A9) 

 From the fundamental property of generalized inverse 

matrix and its solution
*
, the solution with respect to  K

1/ 2
u  

can be obtained as 

 
K1/ 2 u = AK-1/ 2( )

+

b - Aû( )+ I - AK-1/ 2( )
+

AK-1/ 2( ) y  

         (A10) 

where ‘+’ denotes the generalized inverse matrix and y is an 

arbitrary vector.  

 Minimizing the variation of total energy with respect to 

 u , it follows that 

 u
= K

1/ 2
û + u( ) - F = 0 .     (A11) 

 Equation (A11) can be rewritten as 

 K
1/ 2

u = F - K
1/ 2

û .      (A12) 

 From Eqns. (A10) and (A12), the following equation is 

obtained. 

 
K

1/ 2
u = AK

-1/ 2( )
+

b - Aû( )+

 
+ I - AK-1/ 2( )

+

AK-1/ 2( ) y = F - K1/ 2û     (A13) 

 Letting 
 
Q = I - AK

-1/ 2( )
+

AK
-1/ 2( ) , solving Eqn. 

(A13) with respect to y, and the fundamental properties of 

generalized inverse matrix
**

, it follows that 

 
y = AK-1/ 2( )

+

AK-1/ 2( )z       (A14) 

where z is another arbitrary vector.  

 Substitution of Eqn. (A14) into Eqn. (A13) and arranging 

the result, it follows that 

                                                
*The general solution of  Ax = b , where A is m n  matrix, x and b are n 1  and 

m 1  vectors, respectively, can be written as 

 
x = A

+
b + I - A

+
A d , 

where I is n n  identity matrix and d is n 1  arbitrary vector.  

 
**

 
AK

-1/ 2( )
+

AK
-1/ 2( ) AK

-1/ 2( )
+

= AK
-1/ 2( )

+
, 

 
Q

+
= I - AK

-1/ 2( )
+

AK
-1/ 2( )

+

= Q , 
 Q

+
Q = Q  

 

 

 

 

 

 

Fig. (5). Finite element analysis of 100 elements on the beam D-2,4; (a) Constraint forces, (b) Moment ratio. 
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K

1/ 2
u = AK

-1/ 2( )
+

b - Aû( )       (A15) 

and premultiplying both sides of Eqn. (A15) by  K
1/ 2

, the 

constraint force is obtained as 

 
F

c
= K u = K

1/ 2
AK

-1/ 2( )
+

b - Aû( )     (A16) 

 Substituting Eqn. (A16) into Eqn. (A7), the equilibrium 

equation of constrained structure is derived as 

 
F = Kû + K

1/ 2
AK

-1/ 2( )
+

b - Aû( )      (A17) 

or 

 
u = û + K

-1/ 2
AK

-1/ 2( )
+

b - Aû( )      (A18) 
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